Answer:
540 is the ans
Step-by-step explanation:
this is the correct answer
Answer:
(a)
and
are indeed mutually-exclusive.
(b)
, whereas
.
(c)
.
(d)
, whereas 
Step-by-step explanation:
<h3>(a)</h3>
means that it is impossible for events
and
to happen at the same time. Therefore, event
and
are mutually-exclusive.
<h3>(b)</h3>
By the definition of conditional probability:
.
Rearrange to obtain:
.
Similarly:
.
<h3>(c)</h3>
Note that:
.
In other words,
and
are collectively-exhaustive. Since
and
are collectively-exhaustive and mutually-exclusive at the same time:
.
<h3>(d)</h3>
By Bayes' Theorem:
.
Similarly:
.
The volume of a rectangular prism is (length) x (width) x (height).
The volume of the big one is (2.25) x (1.5) x (1.5) = <em>5.0625 cubic inches</em>.
The volume of the little one is (0.25)x(0.25)x(0.25)= 0.015625 cubic inch
The number of little ones needed to fill the big one is
(Volume of the big one) divided by (volume of the little one) .
5.0625 / 0.015625 = <em>324 tiny cubies</em>
=================================================
Doing it with fractions instead of decimals:
The volume of a rectangular prism is (length) x (width) x (height).
Dimensions of the big one are:
2-1/4 = 9/4
1-1/2 = 3/2
1-1/2 = 3/2
Volume = (9/4) x (3/2) x (3/2) =
(9 x 3 x 3) / (4 x 2 x 2) =
81 / 16 cubic inches.
As a mixed number: 81/16 = <em>5-1/16 cubic inches</em>
Volume of the tiny cubie = (1/4) x (1/4) x (1/4) = 1/64 cubic inch.
The number of little ones needed to fill the big one is
(Volume of the big one) divided by (volume of the little one) .
(81/16) divided by (1/64) =
(81/16) times (64/1) =
5,184/16 = <em>324 tiny cubies</em>.
5/4 = 75/g....cross multiply because this is a proportion
5g = 300
g = 300/5
g = 60
so in 2nd semester, there were 75 students in art class and 60 students in gym class....for a total of 135 students.
1st semester....ratio was 2:7...added = 9
art : 2/9(135) = 270/9 = 30 <=== art class had 30
gym: 7/9(135) = 945/9 = 105 <=== gym class had 105
<span>The ratio of areas is the square of the ratio of perimeters;
The area of triangle B / The area of triangle A = 25 ;
The perimeter of triangle B / The perimeter of triangle A = </span>

The perimeter of triangle B is 5many times greater than the perimeter of<span>triangle A!</span>