kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Radius, r = 3
The equation of a sphere entered at the origin in cartesian coordinates is
x^2 + y^2 + z^2 = r^2
That in spherical coordinates is:
x = rcos(theta)*sin(phi)
y= r sin(theta)*sin(phi)
z = rcos(phi)
where you can make u = r cos(phi) to obtain the parametrical equations
x = √[r^2 - u^2] cos(theta)
y = √[r^2 - u^2] sin (theta)
z = u
where theta goes from 0 to 2π and u goes from -r to r.
In our case r = 3, so the parametrical equations are:
Answer:
x = √[9 - u^2] cos(theta)
y = √[9 - u^2] sin (theta)
z = u
(1.6666667)x+(.5)=0
1.6666667x=-.5
1.6666667x/1.666667=-.5/1.6666667
x= -.5/1.6666667
x=.3
Answer:
B I think
Step-by-step explanation:
U just divide 70 and 45 and u get your answer