1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ratelena [41]
3 years ago
5

What is the greatest common factor of 24s3, 12s4, and 18S?

Mathematics
1 answer:
spin [16.1K]3 years ago
7 0

Answer:

the greatest common factor is 6

You might be interested in
Please someone help me with this please
Elodia [21]
Help u with what I need to know what u need help on
3 0
3 years ago
A ball is thrown from an initial height of 2 feet with an initial upward velocity of 29 ft/s. The balls height (h) [in feet] aft
nirvana33 [79]
The ball is at a height of 14 feet after 1.17 and 0.64 seconds.

This is an example of a quadratic equation. Write out the equation with 14 in the place of the height. Then, set it equal to zero.

14 = 2 + 29t - 16t^2

0 = -16t^2 + 29t -12

Now, we can use the quadratic equation to solve.
A = -16
B = 29
C = -12

You will get the solutions of 1.17 and 0.64.
5 0
3 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
What is bigger 3.345 or 3.35 or 3.3
Sidana [21]
3.35 is bigger then 3.345
8 0
3 years ago
If c=25 and B=75 degrees, find a. Round to the nearest tenth.
worty [1.4K]

Answer:

a=6.9

Step-by-step explanation:

Since you know that C is a right angle, you can use the Law of Sines to find a. The first step is to find the size of the angle A, which is 180-74-90=16. Now, you set up a ratio that involves 3 knowns and one unknown to get \frac{\sin(90^\circ)}{25} = \frac{\sin(16^\circ)}{a}, which after cross multiplying yields a=\sin(16^\circ)\cdot25\approx 6.9. PM me if you have any questions?

5 0
3 years ago
Other questions:
  • Which of the following options represent the three undefined terms in geometry
    6·1 answer
  • How can you find the area of 224sq metera and base of 16 meters of a parallelogram
    6·1 answer
  • 2x+ 8y = -3<br> 3x+ 6y = -4<br> Choose all answers that apply
    12·1 answer
  • A women made a deposit of $196.If her deposit considered of 60 bills, some of them one-dollar bills and the rest being five-doll
    5·1 answer
  • Multiple choice question
    8·2 answers
  • 10 subtract 5 equals what
    10·2 answers
  • al doilea termen al unei adunari este de 6 ori mai mare decat primul.Daca as aduna primului numar 4,acesta ar deveni treimea cel
    12·1 answer
  • Please enter the letter of your answer in the space below
    6·1 answer
  • 2. A door is 76 inches high. How high is it in decimeters?
    5·1 answer
  • What are some studying tips because while doing math i feel like dying...
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!