Given : A inequality is given to us . The inequality is 19 ≥ t + 18 ≥ 11 .
To Find : The correct option between the given ones . To write the compound inequality with integers .
Solution : The given inequality to us is 19 ≥ t + 18 ≥ 11 . Let's simplify them seperately .

⇒ 19 ≥ t + 18 .
⇒ t + 18 ≤ 19 .
⇒ t ≤ 19 - 18 .
⇒ t ≤ 1 = 1 ≥ t . ..................(i)

⇒ t + 18 ≥ 11 .
⇒ t ≥ 11 - 18.
⇒ t ≥ -7 . ....................(ii)
<u>On</u><u> </u><u>combing</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>&</u><u> </u><u>(</u><u>ii</u><u>)</u><u> </u><u>.</u>

This means that t is less than or equal to 1 but greater than or equal to (-7) .
Answer:
If we consider three 20 sided dice, the chance of rolling 15 on each of them is: P = (1/20)³ = 0.000125 (or P = 1.25·10⁻⁴ in scientific notation).
Step-by-step explanation:
Answer:
Left ends is +ve infinity and Right end is -ve infinity. however both tends to be infinity.
Step-by-step explanation:
Let us under stand the basics of determining the end behavior of a graph , by just analyzing the degrees and coefficient of a polynomial.Please refer to the image we have shared with this for a better understanding also.
The rule is bifurcated in two broad category and and two sub category in them.
Category .
The nature of degree (Even / Odd )
Subcategory .
The coefficient of term containing degree ( Negative/Positive )
Rule 1 :
Degree : Even
If coefficient is
Rule 1(a) : Positive ⇒Both ends are towards +ve infinity
Rule 1(b) : Negative⇒Both ends are towards -ve infinity
Rule 2 :
Degree : Odd
If coefficient is
Rule 2(a) : Positive ⇒ Left ends is -ve infinity and Right end is +ve infinity
Rule 2(b) : Negative ⇒ Left ends is +ve infinity and Right end is -ve infinity
Let us see our function f(x) =
now
Here
Degree is 3 which is Odd
Its coefficient is (-2) which is negative
Hence we go to rule 2(b)
That is the Left ends is +ve infinity and Right end is -ve infinity. however both tends to be infinity.