Answer:
32√5
Step-by-step explanation:
We have the right triangles PQA and PQB as well as the given right triangle QAB.
cot(PAQ) = 2/5 = QA/PQ
cot(PBQ) = 3/5 = QB/PQ
cot(PAQ) / cot(PBQ) = (2/5) / (3/5) = 2/3
cot(PAQ) / cot(PBQ) = (QA/PQ) / (QB/PQ) = QA / QB
QA / QB = 2/3
QA = (2/3) QB
QB = (3/2) QA
By the Pythagorean Theorem we have:
(QA)² + 32² = (QB)²
(QA)² + 32² = (3/2 QA)²
(QA)² + 1024 = (9/4) (QA)²
(5/4) (QA)² = 1024
(QA)² = (4/5)1024 = 4096/5
QA = 64/√5
Solve for PQ.
cot(PAQ) = QA/PQ
PQ = QA / cot(PAQ)
PQ = (64/√5) / (2/5) = 32√5
The height of the tower is 32√5.
A because the table doesn’t have a constant rate of change
Hello :
<span>y = 3x2 + 24x - 1
= 3(x²+8x) -1
= 3 (x² +2(4)(x) +4²- 4² ) -1
= 3((x+4)² -16)-1
y = 3(x+4)² - 49
</span><span>the line of symmetry is : x= - 4</span>
Answer:
k=4.5
Step-by-step explanation:
40.5/9
In triangle, ABD,
AD²= AB²+BD²
AB² = AD²-BD²
AB² = 18²-9² = 324-81 = 243
AB = √243
In triangle, ABC,
AC² = AB²+BC²
AC² = (√243)²+(13)²
AC² = 243+169
AC = √412
AC = 20.29