<h2>Hello!</h2>
The answer is: 19.59 m
<h2>Why?</h2>
Since there is no information about the launch type, we can assume that the ball is thrown vertically upward.
When the ball reaches the maximum height, just at that moment, the velocity turns to 0, and after that moment, the ball starts falling, so:
We will use the following formula:

Where:
Vf= Final velocity = 0
Vi= Initial velocity = 
g = Gravity Acceleration = 
s = Traveled distance

Have a nice day!
Answer:
In the Solar system, the Jovian planets are farther from the Sun. Majority of the extrasolar Jovian planets are closer to their stars. These are known as "Hot Jupiters". From the studies, the reason for the existence of massive Jovian planets to be closer to their star is found to be the gravitational interaction of these planets with other massive planets which pushes them closer to their stars. These planets are formed beyond the frost line initially but later on migrate inwards.
Hi there!

Since the object is being pulled at a constant velocity, the forces must be balanced.
Since there is no movement vertically, we must take into account the horizontal forces. We can also assume a positive acceleration to be in the direction of motion.
The acceleration and force due to gravity on an incline is:
a = gsinФ
F = MgsinФ
∑F = -MgsinФ + T
Since it is getting pulled at a constant velocity, ∑F = 0. So:
0 = -MgsinФ + T
MgsinФ = T
Solve for T by plugging in values. Let g = 10 m/s²
T = (120)(10)sin(27) ≈ 545 N
Answer:
Explanation:
When 238U which is radioactive turns into 206Pb , it becomes stable and no further disintegration is done . Hence in the initial period ratio of 238U undecayed and 206Pb formed will be very high because no of atoms of 238U in the beginning will be very high. Gradually number of 238U undecayed will go down and number of 206Pb formed will go up . In this way the ratio of 238U and 206Pb in the mixture will gradually reduce to be equal to one or even less than one .
In the given option we shall calculate their raio
1 ) ratio of 238U and 206Pb = 5
2 ) ratio of 238U and 206Pb = 4
3 )ratio of 238U and 206Pb = 1
4 ) ratio of 238U and 206Pb = 20
5 )ratio of 238U and 206Pb = 3
lowest ratio is 1 , hence this sample will be oldest.
Ranking from youngest to oldest
4 , 1 , 2 , 5 , 3 .