Answer:
640 m
Step-by-step explanation:
We can consider 4 seconds to be 1 time unit. Then 8 more seconds is 2 more time units, for a total of 3 time units.
The distance is proportional to the square of the number of time units. After 1 time unit, the distance is 1² × 80 m. Then after 3 time units, the distance will be 3² × 80 m = 720 m.
In the additional 2 time units (8 seconds), the ball dropped an additional
... (720 -80) m = 640 m
_____
<em>Alternate solution</em>
You can write the equation for the proportionality and find the constant that goes into it. If we use seconds (not 4-second intervals) as the time unit, then we can say ...
... d = kt²
Filling in the information related to the first 4 seconds, we have ...
... 80 = k(4)²
... 80/16 = k = 5
Then the distance equation becomes ...
... d = 5t²
After 12 seconds (the first 4 plus the next 8), the distance will be ...
... d = 5×12² = 5×144 = 720 . . . meters
That is, the ball dropped an additional 720 -80 = 640 meters in the 12 -4 = 8 seconds after the first data point.
Answer:
C. The area is 900 square feet
Step-by-step explanation:
A square has four equal sides, and if one side is 30 feet then all sides are 30 feet. The formula for a square is A=s2
A=30 squared
A=900 square feet
Expression (non-algebraic): 3+2
An equation: 2x +1 = 21
An inequality: 2x > 2+2
We consider the x- and y-coordinates separately. Let the coordinates of G be (x, y). Now considering the x-coordinates:
FG/FH = (x - (-3)) / (-3 - (-3)) = 2/3
x + 3 = (2/3)(6)
x = 1
For the y-coordinates:
FG/FH = (y - 2) / (7 - 2) = 2/3
y - 2 = (2/3)(5)
y = 16/3
Therefore the coordinates of G are (1, 16/3).