1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksana_A [137]
3 years ago
8

Find the quotient when x2 + 10x + 21 is divided by x + 7

Mathematics
1 answer:
Alja [10]3 years ago
5 0

Answer:

The quotient is x+3

Step-by-step explanation:

We first use the remainder theorem to determine whether x+7 is divisible by

x^2+10x+21:

(-7)^2+10(-7)+21\\ = 49 - 70+21 = 0

the remainder is zero which means x^2+10x+21 is divisible by x+7.

Now, we could do polynomial long division to find the quotient, but in this case, it turns out that guessing is easier.

x^2+10x+21

is factored as

x^2+10x+21 = (x+7)(x+3)

which means

\dfrac{x^2+10x+21}{x+7} =(x+3)

which means the quotient is x+3.

You might be interested in
Dmitri wants to cover the top and sides of the box shown with glass tiles that are 5mm square. How many tiles does he need? ( Th
ycow [4]

Answer:

372

Step-by-step explanation:

We are given that the dimensions of the box are,

Length = 15 cm, Width = 20 cm and Height = 9 cm.

We know that the box represents a cuboid.

Since, surface area of a cuboid = L×W + 2×L×H + 2×W×H

Thus, the surface area of the box = 15×20 + 2×15×9 + 2×20×9

i.e. Surface area = 300 + 270 + 360

i.e. Surface area = 930.

Thus, the surface area of the box is 930 cm² i.e. 9300 mm².

Further, the sides of the tiles are 5 mm and the tile represents a square.

So, the surface area of the tile = 5 × 5 = 25 mm².

This gives us that,

Number of tiles required to cover the box = \frac{9300}{25} = 372.

Hence, Dmitri requires 372 tiles to cover the box.

5 0
3 years ago
Read 2 more answers
Abigail needs at least $199 to purchase the new phone that she wants. Last week she babysat and earned $45. Write and solve an i
N76 [4]
5 or 4 weeks because 199 divided by 45 equals 4.4222222222
7 0
4 years ago
A shopper buys 3 notebooks for $5 each. The percent sales tax is 8%. How much is the total sale?
Tamiku [17]

Answer:

$16.20

Step-by-step explanation:

3x5=15 15x.08=1.2 15+1.2=16.2

7 0
3 years ago
Read 2 more answers
You choose a marble at random from a bag containing 8 brown marbles 6 yellow marbles and one purple marble. You replace the marb
Andrej [43]
Pick 1: 6 yellow out of 15 total marbles = 6/15 = 2/5
Pick 2: 6 yellow out of 15 total marbles = 6/15 = 2/5

Pick 1 AND Pick 2
   2/5     x       2/5    = 4/25
5 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Other questions:
  • Bailey writes the expression g2 + 14g + 40 to represent the area of a planned school garden in square feet. If g = 5, what are t
    14·1 answer
  • 6x−7=536x−7=53 helppppp
    5·2 answers
  • Find three consecutive integers for which 3 times the sum of the first and the third is -342
    13·1 answer
  • Kenda owns a restraunt she charges $3.00 for 2 eggs and 1 piece of toast and 1.80 for 1 egg and 1 piece of toast how much does k
    5·1 answer
  • HELP ME WITH THESE THANKS :)!
    9·1 answer
  • Simplify: (18)2(3)2(4)3 (6)2(2)3
    5·1 answer
  • Help please<br> What is the value of y in this system of equations? <br>-6x+2y=-18 <br>-3x-2y=54
    15·1 answer
  • WILL AMRK BRAINLIESTTT IF GOTTEN RIGHTTTTT
    13·1 answer
  • Calculate the finance charge and new balance using the previous balance method.
    10·1 answer
  • Expand to write an equivalent expression <br> -1/4 (-8x + 12y)
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!