Answer:
A. v(t) = sin (2πft + π/2) = A cos (2πft)
Step-by-step explanation:
According to trigonometry friction, the following relationship are true;
Sin(A+B) = sinAcosB + cosAsinB
We will be using this relationship to check which option is true.
Wave equation is represented as shown;
y(t) = Asin(2πft±theta)
For positive displacement,
y(t) = Asin(2πft+theta)
If theta = π/2
y(t) = Asin(2πft+π/2)
y(t) = A[ sin 2πftcosπ/2 + cos2πft sin π/2]
Since sinπ/2 = 1 and cos (π/2) = 0
y(t) = A[ sin 2πft (0)+ cos2πft (1)]
y(t) = A[0+ cos2πft]
y(t) = Acos2πft
Hence the expression that is true is expressed as;
v(t) = Asin(2πft+π/2) = Acos2πft