Answer:
infinitely many answers, any odd integer n times π/2
ex. π/2, 3π/2, 5π/2
Step-by-step explanation:
we know that cos (π/2) or cos(3π/2) is 0
if one factor is 0, the product is zero, so we will not care about csc(x).
x is any odd integer n times π/2
Answer: -1/2
Step-by-step explanation:
Answer:
(21x^4y + 7x^3y^2 − 28x^2y^2) ÷ 7xy = 3x^3 + x^2y − 4xy
Step-by-step explanation:
(9xy^2 + 12x^3y^4 − 6x) ÷ 3x = 4x^2y^4 + 3y^2 − 2 (False: 9xy^2:3x=3y^2)
25x^4y^2 + 10x^2y^4 − 15y) ÷ 5y = 5x^4y + 2x^3y^2 − 3 (False: 10x^2y^4:5y=2x^2y^3)
(16x^4y^2 + 24x^2y^2 − 8xy^2) ÷ 4xy = 4x^4y + 6xy− 2y(False: 16x^4y^2:4xy=4x^3y)
(21x^4y + 7x^3y^2 − 28x^2y^2) ÷ 7xy = 3x^3 + x^2y − 4xy (True)