Answer:
Answer below
Explanation:
A - false
B - true
C - false
In chemistry there is a principle that polar compounds are soluble with other polar compounds and non-polar compounds are mutually different.
Thus, sodium chloride is an ionic salt (polar) so it is not soluble in the benzene (non-polar) covalent compound, but it is soluble in water that is polar.
The ionic compounds will be soluble in polar solvents and not soluble in non-polar solvents, regardless of whether they are organic or inorganic.
Answer: The question has some details missing. here is the complete question ; An analytical chemist is titrating 88.4 mL of a 0.2700 M solution of ammonia (NH3 with a 0.4300 M solution of HNO3. The pK, of ammonia is 4.74 Calculate the pH of the base solution after the chemist has added 66.3 mL of the HNO3 solution to it . Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution
Explanation:
Given ;
- number of moles of base = 88.4 x 0.2700 = 23.868
- number of moles of acid = 0.4300 x 66.3 = 28.509
- This was after the equivalence point, as such net moles of acid = 28.509 - 23.868 = 4.641mol
- total volume of solution = 88.4 + 66.3 = 154.7mL
- Concentration of Acid = moles/volume = 4.641/154.7 = 0.03M
- From pH = -log[H^+] = -Log[0.03]
It happens so because,
we know that evaporation is a surface phenomenon. If surface area is increased, the rate of evaporation increases. That's why when we pour hot water in a plate it cools faster.
It’s A because +1500 kJ is before the arrow. it’s in the reactant side. so it is endothermic.
Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is
.
The shapes of SO2 and BrF5 are shown below: