Answer:
The volume of solution in liters required to make a 0.250 M solution from 3.52 moles of solute is 14.08 liters of solution
Explanation:
The question relates to the definition of the concentration of a solution which is the number of moles per liter (1 liter = 1 dm³) of solution
Therefore we have;
The concentration of the intended solution = 0.250 M
Therefore, the number of moles per liter of the required resolution = 0.250 moles
Therefore, the concentration of the required solution = 0.250 moles/liter
The volume in liters of the required solution that will have 3.52 moles of the solute is given as follows;
The required volume of solution = The number of moles of the solute/(The concentration of the solution)
∴ The required volume of solution = 3.52 moles/(0.250 moles/liter) = 14.08 liters
The required volume of solution to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Therefore the number of liters required to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Answer: A) 3.21 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side.

We are given:
Mass of iron = 5.58 g
Mass of iron sulphide = 8.79 g
Mass of sulphur = x g
Total mass on reactant side = 5.58 + x
Total mass on product side = 8.79 g
Applying law of conservation of mass, we get:
Hence, the mass of reacting sulfur is 3.21 g.
The products are on the right side of the equation. For this one it would be 2AlPO4 + 3CaSO4
<em>Answer:</em>
<em>Chemical equations must be balanced to satisfy the law of conservation of matter, that states that matter cannot be produced or destroyed in a closed system. The law of conservation of mass governs the balancing of a chemical equation.</em>
Explanation:
Atomic number is 8 and atomic mass is taken as 16 amu