Answer:
The convection process plays an important role in the liquid. Due to the increasing heat supply or high amount of temperature, the fluid gets heated up, as a result of which it becomes warm, less dense and eventually rises up forming convection cells.
In the interior of the earth, the hot molten rocks get heated up due to the heat supplied by the core of the earth. This makes the magma warm and less dense and rises upward forming convection currents in the mantle.
This convection process is similar to the convection cells that form in the atmosphere, where the hot, less dense air rises up in the atmosphere forming a low-pressure zone. This uprising air forms convection cells, in which the warm air rises and as it rises high in the atmosphere, the temperature becomes low, making the air cold and it eventually sinks.
To solve this problem we will apply the normal distribution, with which we will obtain the probability that the given event will occur. Concepts such as the mean and standard deviation will be present throughout the solution of the problem. Increasing or decreasing the average would change the location or center point of the curve. The change in the standard deviation would lead to the change in the dispersion of the data. As the standard deviation increases, the curve would become flatter.
Let X be the output voltage of power supply
X∼N 
A
The lower and upper specifications for voltage are 4.95 V and 5.05 V, respectively





Hence probability that a power supply selected at random will conform to the specifications on voltage is 0.9876
A. very small objects behave like like particles.
The work done by force on a spring hung from the ceiling will be 1.67 J
Any two things with mass are drawn together by the gravitational pull. We refer to the gravitational force as attractive because it consistently seeks to draw masses together rather than pushing them apart.
Given that a spring is hung from the ceiling with a 2.0-kg mass suspended hung from the spring extends it by 6.0 cm and a downward external force applied to the mass extends the spring an additional 10 cm.
We need to find the work done by the force
Given mass is of 2 kg
So let,
F = 2 kg
x = 0.1 m
Stiffness of spring = k = F/x
k = 20/0.006 = 333 n/m
Now the formula to find the work done by force will be as follow:
Workdone = W = 0.5kx²
W = 0.5 x 333 x 0.1²
W = 1.67 J
Hence the work done by force on a spring hung from the ceiling will be 1.67 J
Learn more about force here:
brainly.com/question/12970081
#SPJ4