Answer:
θ₁ = 35.32°
Explanation:
given,
refractive index of medium 1 = n₁ = 1.75
refractive index of medium 2 = n₂ = 1.24
condition to describe the refracted angle

...(1)
Using Snell's Law
n₁ sin θ₁ = n₂ sin θ₂
θ₁ , θ₂ is the angle of incidence and refractive index
n₁. n₂ is the refractive index medium 1 and medium 2
1.75 x sin θ₁ = 1.24 x sin θ₂
From equation (1)
1.75 x sin θ₁ = 1.24 x sin (90-θ₁)
1.75 sin θ₁ = 1.24 cos θ₁
tan θ₁ = 0.708
θ₁ = 35.32°
Hence, angle of incidence is equal to θ₁ = 35.32°
Since the velocity of the real plane is 0, p=mv=0. So the paper airplane actually has more momentum since it's value is not 0.
The answer is D. Sound insulators prevent sound from being transmitted better than elastic solids because sound insulators basically muffle and block the sound waves.
First, we will get the resultant force:
The direction of the force due to the person's weight is vertically down.
weight of person = 700 newton
Assume that the force exerted by the arms has a vertically upwards direction.
Force exerted by arms = 2*355 = 710 newtons
Therefore, the resultant force = 710 - 700 = 10 newtons (in the vertically upwards direction)
Now, we will get the mass of the person.
weight = 700 newtons
weight = mass * acceleration due to gravity
700 = 9.8*mass
mass = 71.428 kg
Then we will calculate the acceleration of the resultant force:
Force = mass*acceleration
10 = 71.428*acceleration
acceleration = 0.14 m/sec^2
Finally, we will use the equation of motion to get the final speed of the person.
V^2 = U^2 + 2aS where:
V is the final velocity that we need to calculate
U is the initial velocity = 0 m/sec (person starts at rest)
a is the person's acceleration = 0.14 m/sec^2
S is the distance covered = 25 cm = 0.25 meters
Substitute with the givens in the above equation to get the final speed as follows:
V^2 = U^2 + 2aS
V^2 = (0)^2 + 2(0.14)(0.25)
V^2 = 0.07
V = 0.2645 m/sec
Based on the above calculations:
The person's speed at the given point is 0.2645 m/sec
It's a Newton Meter Those two are multiplied to get a joule.