Answer:
Theoretical yield of the reaction = 34 g
Excess reactant is hydrogen
Limiting reactant is nitrogen
Explanation:
Given there is 100 g of nitrogen and 100 g of hydrogen
Number of moles of nitrogen = 100 ÷ 28 = 3·57
Number of moles of hydrogen = 100 ÷ 2 = 50
Reaction between nitrogen and hydrogen yields ammonia according to the following chemical equation
N2 + 3H2 → 2NH3
From the above chemical equation for every mole of nitrogen that reacts, 3 moles of hydrogen will be required and 2 moles of ammonia will be formed
Now we have 3·57 moles of nitrogen and therefore we require 3 × 3·57 moles of hydrogen
⇒ We require 10·71 moles of hydrogen
But we have 50 moles of hydrogen
∴ Limiting reactant is nitrogen and excess reactant is hydrogen
From the balanced chemical equation the yield will be 2 × 3·57 moles of ammonia
Molecular weight of ammonia = 17 g
∴ Theoretical yield of the reaction = 2 × 3·57 × 17 = 121·38 g
Mass over volume
200 over100
2
Answer: option <span>A) increases from bottom to top within the group.
Explanation:
</span>It is a known trend that the metallic character of the elements increase from let to right and from top to bottom.
The greater the metallic character the greater the reactivity of the metal.
So, the elements of the columns 1 and 2 are the most reactive metals and among them the elements at the bottom are yet more reactive.
<span>The higher reactivity of the metals that are lower in the periodic table is attributed to the greater total number of electrons.
The greater the total number of electrons the more reactive the metals
as their outermost electrons (the valence electrons which are those that react) are located further from the nucleus and therefore they are held less
strongly, which makes them react more easily.</span>