Answer:
B. ADDITION OF TWO GROUPS ACROSS A DOUBLE BOND
Explanation:
Addition reaction of alkenes involves the conversion of the double bond in alkenes Inyo single bonds by the addition of two groups of atoms or radicals.
During this addition reaction, two substances, an unsaturated compound(e.g. ethane) and an attacking reagent (hydrogen, halogens, hydrogen halides, chlorine and bromine water) combines to form a single new compound without forming any other products. So a saturated product or one in which is an increase in degree of saturation is formed.
Answer:
Uranium mines operate in many countries, but more than 85% of uranium is produced in six countries: Kazakhstan, Canada, Australia, Namibia, Niger, and Russia. Historically, conventional mines open pit or underground were the main source of uranium.
Explanation:
Hope this helps
Answer:
22.989769 u
Explanation:
The atomic weight of any atom can be found by multiplying the abundance of an isotope of an element by the atomic mass of the element and then adding the results together. This equation can be used with elements with two or more isotopes: Carbon-12: 0.9889 x 12.0000 = 11.8668. Carbon-13: 0.0111 x 13.0034 = 0.1443.
Given that, an experiment to measure the enthalpy change for the reaction of aqueous copper(II) sulfate, CuSO4(aq) and zinc, Zn(s) was carried out in a coffee cup calorimeter; the heat of the reaction in the whole system is calculated to be 2218.34 kJ
Heat of reaction (i.e enthalpy of reaction) is the quantity of heat that is required to be added or removed when a chemical reaction is taken place in order to maintain all of the compounds present at the same temperature.
The formula used to calculate the heat of the reaction can be expressed as follows:
Q = mcΔT
where:
- Q = quantity of heat transfer
- m = mass
- c = specific heat of water = 4.18 kJ/g °C (constant)
- ΔT = change in temparature
From the information given:
- The initial temperature (T₁) = 25° C
- The final temperature (T₂) = 91.5° C
∴
The change in temperature i.e. ΔT = T₂ - T₁
ΔT = 91.5° C - 25° C
ΔT = 66.5° C
The number of moles of CuSO₄ = 1.00 mol/dm³ × 50.0 cm³

= 0.05 moles
- Since the molar mass of CuSO₄ = 159.609 g/mol
Then;
Using the relation:

By crossing multiplying;
mass of CuSO₄ = number of moles of CuSO₄ × molar mass of CuSO₄
mass of CuSO₄ = 0.05 moles × 159.609 g/moles
mass of CuSO₄ = 7.9805 grams
∴
Using the formula from above:
Q = mcΔT
Q = 7.9805 g × 4.18 kJ/g °C × 66.5° C
Q = 2218.34 kJ
Therefore, we can conclude that the heat of the reaction is 2218.34 kJ
Learn more about the chemical reaction here:
brainly.com/question/20250226?referrer=searchResults