If you would round it to the nearest tenth which is the third nine, you'd see that it would add up to the whole number 3. So the answer is 3!!
Answer:
100/12
They will each have 8 ounces.
Step-by-step explanation:
Answer:
The cost of a sheet metal per square foot is $30
Step-by-step explanation:
Given
Size of Sheet Metal = 8.2ft squared
Used Sheet Metal = 3.5ft squared
Worth of leftover sheet = $141
Equation: 
Required
Find the cost per square foot of the sheet metal
Solving for x in the above equation will give the cost per square foot of the sheet metal.


Divide both sides by 4.7



Hence, the cost of a sheet metal per square foot is $30
Answer:

Step-by-step explanation:
A set of normally distributed data has a mean of 3.2 and a standard deviation of 0.7. Find the probability of randomly selecting 30 values and obtaining an average greater than 3.6.
We can denote the population mean with the symbol 
According to the information given, the data have a population mean:
.
The standard deviation of the data is:
.
Then, from the data, a sample of size
is taken.
We want to obtain the probability that the sample mean is greater than 3.6
If we call
to the sample mean then, we seek to find:

To find this probability we find the Z statistic.

Where:
Where
is the standard deviation of the sample



Then:

The probability sought is: 
When looking in the standard normal probability tables for right tail we obtain:

Answer:x=-12/7
Step-by-step explanation:
-6x-15-x+3=0
-7x-12=0
-7x=12
X=-12/7