- Subtraction can be thought of as the inverse operation of addition, OR as addition itself, if you look at it as adding a negative number.
- The number line allows us to interpret subtraction (or addition of a negative) geometrically; we can view it as a movement to the left on the number line with a distance equal to the number being subtracted.
- Lastly, the value of any expression a - b (where a and b are real numbers) is determined by the relative sizes of the numbers. If a > b, then a - b > 0 (a positive result). If b > a, then a - b < 0 (a negative result.
Answer:
x > 9/5
Step-by-step explanation:
Step 1: Write inequality
2/3x - 1/5 > 1
Step 2: Solve for <em>x</em>
- Add 1/5 to both sides: 2/3x > 6/5
- Divide both sides by 2/3: x > 9/5
Here we see that any <em>x</em> value greater than 9/5 will work.
Answer:
![\sqrt[3]{x^{10} }[\tex]Step-by-step explanation:Exponential Rules:[tex]x^{a} + x^{b} = x^{a + b}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExponential%20Rules%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Dx%5E%7Ba%7D%20%2B%20x%5E%7Bb%7D%20%3D%20x%5E%7Ba%20%2B%20b%7D)
![\sqrt[b]{x^{a} } =x^{\frac{a}{b} } Original Equation:[tex]\sqrt[3]{x^{10} } = x^{\frac{10}{3} } Answer:[tex]\sqrt[3]{x^{10} }[\tex]Convert the cubed root to a power. Cubed root = [tex]\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bb%5D%7Bx%5E%7Ba%7D%20%7D%20%3Dx%5E%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EOriginal%20Equation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%20%20%3D%20x%5E%7B%5Cfrac%7B10%7D%7B3%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3EConvert%20the%20cubed%20root%20to%20a%20power.%20Cubed%20root%20%3D%20%5Btex%5D%5Cfrac%7B1%7D%7B3%7D)

Convert them, so they have a common denominator - 


[tex]\sqrt[3]{x^{10} }[\tex] = [tex]x^{\frac{10}{3} } [\tex]
With the given conditions you should construct no traingle because it is scalene