If I understand the question, you have to get n alone. in this case, you have to subtract 7 from both sides, resulting in n (is less than) -10
To find the range of data, you first order the data least to greatest:
7, 12, 15
Then you subtract the smallest number from the largest:
15-7=8
The range is 8.
The intensity of sound which the decibel level of the sound measures 156 is 3.981 × 10³ W/m²
Decibel level, dB = 10log₁₀(I/I₀) where dB = decibel level = 156, I = intensity at 156 dB and I₀ = 10⁻¹² W/m².
Since we require I, making I subject of the formula, we have
dB/10 = log₁₀(I/I₀)
![\frac{I}{I_{0} } = 10^{\frac{dB}{10} } \\I = I_{0} 10^{\frac{dB}{10} }](https://tex.z-dn.net/?f=%5Cfrac%7BI%7D%7BI_%7B0%7D%20%7D%20%3D%2010%5E%7B%5Cfrac%7BdB%7D%7B10%7D%20%7D%20%5C%5CI%20%3D%20I_%7B0%7D%2010%5E%7B%5Cfrac%7BdB%7D%7B10%7D%20%7D)
Substituting the values of the variables into the equation, we have
![I = I_{0} 10^{\frac{dB}{10} }\\I = 10^{-12} 10^{\frac{156}{10} }\\I = 10^{-12} 10^{15.6}\\I = 10^{15.6-12} \\I = 10^{3.6} W/m^{2}](https://tex.z-dn.net/?f=I%20%3D%20I_%7B0%7D%2010%5E%7B%5Cfrac%7BdB%7D%7B10%7D%20%7D%5C%5CI%20%3D%2010%5E%7B-12%7D%2010%5E%7B%5Cfrac%7B156%7D%7B10%7D%20%7D%5C%5CI%20%3D%2010%5E%7B-12%7D%2010%5E%7B15.6%7D%5C%5CI%20%3D%2010%5E%7B15.6-12%7D%20%5C%5CI%20%3D%2010%5E%7B3.6%7D%20W%2Fm%5E%7B2%7D)
I = 3981.072W/m²
I = 3.981 × 10³ W/m²
So, the intensity of sound which the decibel level of the sound measures 156 is 3.981 × 10³ W/m²
Learn more about intensity of sound here:
brainly.com/question/4431819
Answer:
I used the graph shown below.
Step-by-step explanation:
The equation of the line is y = x - 4
Answer:
![f(x,y)=ln secx+cosx siny+C](https://tex.z-dn.net/?f=f%28x%2Cy%29%3Dln%20secx%2Bcosx%20siny%2BC)
Step-by-step explanation:
We are given that DE
![(tanx-sinx siny)dx+cosxcosydy=0](https://tex.z-dn.net/?f=%28tanx-sinx%20siny%29dx%2Bcosxcosydy%3D0)
We have to determine given DE is exact or not.
Compare it with Mdx+Ndy=0
![M=tanx-sinx siny](https://tex.z-dn.net/?f=M%3Dtanx-sinx%20siny)
![N=cosxcosy](https://tex.z-dn.net/?f=N%3Dcosxcosy)
![\frac{\partial M}{\partial y}=](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20M%7D%7B%5Cpartial%20y%7D%3D)
![M_y=-sinxcosy](https://tex.z-dn.net/?f=M_y%3D-sinxcosy)
![\frac{\partial N}{\partial x}=N_x=-sinxcosy](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20N%7D%7B%5Cpartial%20x%7D%3DN_x%3D-sinxcosy)
Therefore, ![M_y=N_x](https://tex.z-dn.net/?f=M_y%3DN_x)
If DE is exact then ![M_y=N_x](https://tex.z-dn.net/?f=M_y%3DN_x)
Hence,it is exact.
![M=\frac{\partial f}{\partial x}=tanx-sinxsiny](https://tex.z-dn.net/?f=M%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%3Dtanx-sinxsiny)
Integrate w.r.t x on both sides
![f(x,y)=\int(tanx-sinxsiny)dx](https://tex.z-dn.net/?f=f%28x%2Cy%29%3D%5Cint%28tanx-sinxsiny%29dx)
...(1)
By using the formula
![\int tanxdx=lnsecx+C,\int sinxdx=-cosx+C](https://tex.z-dn.net/?f=%5Cint%20tanxdx%3Dlnsecx%2BC%2C%5Cint%20sinxdx%3D-cosx%2BC)
Differentiate partially equation (1) w.r.t y
![\frac{\partial f}{\partial y}=cosxcosy+\phi'(y)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3Dcosxcosy%2B%5Cphi%27%28y%29)
By using the formula:
![\frac{d(sinx)}{dx}=cosx](https://tex.z-dn.net/?f=%5Cfrac%7Bd%28sinx%29%7D%7Bdx%7D%3Dcosx)
![N=\frac{\partial f}{\partial y}=cosxcosy=cosxcosy+\phi'(y)](https://tex.z-dn.net/?f=N%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3Dcosxcosy%3Dcosxcosy%2B%5Cphi%27%28y%29)
![\phi'(y)=cosxcosy-cosxcosy=0](https://tex.z-dn.net/?f=%5Cphi%27%28y%29%3Dcosxcosy-cosxcosy%3D0)
![\phi'(y)=0](https://tex.z-dn.net/?f=%5Cphi%27%28y%29%3D0)
Integrate w.r.t y
![\phi(y)=C](https://tex.z-dn.net/?f=%5Cphi%28y%29%3DC)
Substitute the value
![f(x,y)=ln secx+cosx siny+C](https://tex.z-dn.net/?f=f%28x%2Cy%29%3Dln%20secx%2Bcosx%20siny%2BC)