So first step is to simplify everything outside of the radicals.
6*2=12
:. The expression is
__ __
12*\| 8 * \| 2
Now we know that
__ __ __
\| 8 = \| 4 * \| 2
And
__ __
\| 2 * \| 2 = 2
And
__
\| 4 = 2
So if we incorporate what we know into the equation, we can figure it out.
So let's first expand the radical 8.
__ __ __
12*\| 4 * \| 2 * \| 2
Now by simplifying the radical four and combining the radical twos, we can get all whole numbers.
12*2*2
Which equals 48.
Answer:48
Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Answer:
b
Step-by-step explanation:
Answer:
Please Attach The Pic so someone can answer.....
Step-by-step explanation:
Answer: Function g reflected function f across the x-axis.
For function g, as x approaches negative infinity, g(x) approaches negative infinity.
Function f is symmetrical about the point (4,6).