Answer:
[0,12]
Step-by-step explanation:
Answer:
Option C (f(x) =
)
Step-by-step explanation:
In this question, the first step is to write the general form of the quadratic equation, which is f(x) =
, where a, b, and c are the arbitrary constants. There are certain characteristics of the values of a, b, and c which determine the nature of the function. If a is a positive coefficient (i.e. if a>0), then the quadratic function is a minimizing function. On the other hand, a is negative (i.e. if a<0), then the quadratic function is a maximizing function. Since the latter condition is required, therefore, the first option (f(x) =
) and the last option (f(x) =
) are incorrect. The features of the values of b are irrelevant in this question, so that will not be discussed here. The value of c is actually the y-intercept of the quadratic equation. Since the y-intercept is 4, the correct choice for this question will be Option C (f(x) =
). In short, Option C fulfills both the criteria of the function which has a maximum and a y-intercept of 4!!!
Answer:
Step-by-step explanation:
The given sequence of numbers is increasing in geometric progression. The consecutive terms differ by a common ratio, r
Common ratio = 6/3 = 12/6 = 2
The formula for determining the nth term of a geometric progression is expressed as
Tn = ar^(n - 1)
Where
a represents the first term of the sequence.
r represents the common ratio.
n represents the number of terms.
From the information given,
a = 3
r = 2
The function, f(n), representing the nth term of the sequence is
f(n) = 3 × 2^(n - 1)