Answer:False
Explanation:Sound waves need a mediun
Answer:
True A and B
Explanation:
Let's propose the solution of the exercise before seeing the affirmations.
We use the law of refraction
n₁ sin θ₁ = n₂. Sin θ₂
Where n₁ and n₂ are the refractive indices of the two means, θ₁ and θ₂ are the angles of incidence and refraction, respectively
sin θ₂ = (n1 / n2) sin θ₁
Let's apply this equation to the case presented. The index of refraction and airs is 1 (n1 = 1)
Sin θ₂ = (1 / n2) sin θ₁
the angle θ₂ which is the refracted angle is less than the incident angle
Let's analyze the statements time
A. False. We saw that it deviates
B. True Approaches normal (vertical axis)
C. False It deviates, but it is not parallel to normal
D. False It deviates, but approaching the normal not moving away
E. True. Because its refractive index is higher than air,
Answer:
a. Speed = 1.6 m/s
b. Amplitude = 0.3 m
c. Speed = 1.6 m/s
Amplitude = 0.15 m
Explanation:
a.
The frequency of the wave must be equal to the reciprocal of the time taken by the boat to move from the highest point to the highest point again. This time will be twice the value of the time taken to travel from the highest point to the lowest point:
frequency =
= 0.25 Hz
The wavelength of the wave is the distance between consecutive crests of wave. Therefore,
Wavelength = 6.4 m
Now, the speed of the wave is given as:
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
<u>Speed = 1.6 m/s</u>
<u></u>
b.
Amplitude is the distance between the mean position of the wave and the extreme position. Hence, it will be half the distance between the highest and lowest point:
Amplitude = (0.5)(0.6 m)
<u>Amplitude = 0.3 m</u>
<u></u>
c.
frequency =
= 0.25 Hz
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
<u>Speed = 1.6 m/s</u>
<u></u>
Amplitude = (0.5)(0.3 m)
<u>Amplitude = 0.15 m</u>
Question in proper order
The rotational kinetic energy term is often called the <em>kinetic energy </em><em>in</em> the center of mass, while the translational kinetic energy term is called the <em>kinetic energy </em><em>of</em> the center of mass.
You found that the total kinetic energy is the sum of the kinetic energy in the center of mass plus the kinetic energy of the center of mass. A similar decomposition exists for angular and linear momentum. There are also related decompositions that work for systems of masses, not just rigid bodies like a dumbbell.
It is important to understand the applicability of the formula

Which of the following conditions are necessary for the formula to be valid?
a. The velocity vector
must be perpendicular to the axis of rotation
b.The velocity vector
must be perpendicular or parallel to the axis of rotation
c. The moment of inertial must be taken about an axis through the center of mass
Answer:
Option c
Explanation:

The first two conditions are untrue, this is because, you can have rotation in any direction and translation in any direction of any collection of masses. Rotational and translational velocities of masses do not depend on each other
The last statement is true because by definition, the moment of inertia, which is a measure of reluctance, is usually taken about a reference point which is the center of mass