Answer:
h=2.86m
Explanation:
In order to give a quick response to this exercise we will use the equations of conservation of kinetic and potential energy, the equation is given by,

There is no kinetic energy in the initial state, nor potential energy in the end,

In the final kinetic energy, the energy contributed by the Inertia must be considered, as well,

The inertia of the bodies is given by the equation,



On the other hand the angular velocity is given by

Replacing these values in the equation,

Solving for h,

Answer:
The normal force will be "122.8 N".
Explanation:
The given values are:
Weight,
W = 100 N
Force,
F = 40 N
Angle,
θ = 35.0°
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
Good i’m tired how about you
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.
The ampere (symbol: A) is the SI base unit of electric current equal to one coulomb per second.
The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 times 10–7 newton per meter of length.
Electric current is the time rate of change or displacement of electric charge.
One ampere represents the rate of 1 coulomb of charge per second.
The ampere is defined first (it is a base unit, along with the meter, the second, and the kilogram), without reference to the quantity of charge.
The unit of charge, the coulomb, is defined to be the amount of charge displaced by a one ampere current in the time of one second.
This is your answer friend. Hope it helps you.