Answer: equal
Explanation:
I believe the answer is equal but i would need more context.
The simplified model of the hall effect proved that the current (electric) in metals are carried by electrons and not protons. The hall effect introduced the hall coefficient which is the ratio of the induced electric field to the current density x applied magnetic field. This coefficient is unique for each type of metal.
Answer:
The molar mass of the metal is 54.9 g/mol.
Explanation:
When we work with gases collected over water, the total pressure (atmospheric pressure) is equal to the sum of the vapor pressure of water and the pressure of the gas.
Patm = Pwater + PH₂
PH₂ = Patm - Pwater = 1.0079 bar - 0.03167 bar = 0.9762 bar
The pressure of H₂ is:

The absolute temperature is:
K = °C + 273 = 25°C + 273 = 298 K
We can calculate the moles of H₂ using the ideal gas equation.

Let's consider the following balanced equation.
M(s) + H₂SO₄(aq) ⟶ MSO₄(aq) + H₂(g)
The molar ratio of M:H₂ is 1:1. So, 9.81 × 10⁻³ moles of M reacted. The molar mass of the metal is:

Answer:
the answer is b
Explanation:
so the arrows signify the movement/ flow of energy from one organism to the next. so as one animal consumes another the energy from the the consumed animal flows through the consumer. its like eating a protein bar and the energy the protein bar gives you is what you have gotten from consuming the bar.
ps. i hope this helps
Answer:most of the positively charge particles should be bounce back at a range of angles as they collide with the atoms in the foil; only a few should pass straight through the foil
Explanation: