We are given a volume of 160 fluid ounces of chemical which is added to a container that holds 120,000 gallons of water. Assuming that the chemical has the same density as water, we just need to convert 120,000 gallons to ounces.
A conversion factor is taken from literature, 1 gallon is equivalent to 128 fluid ounces. So 160 fluid ounces is only 1.25 gallons, thus occupying minimal space in the container. The employee could add more of the chemical in the container. He can actually add 15360000 fluid ounces in total.
Answer: 99% of confidence interval for the population proportion of employed individuals who work at home at-least once per week
//0.20113,0.20887[/tex]
Step-by-step explanation:
<u>step 1:-</u>
Given sample size n=200
of the 200 employed individuals surveyed 41 responded that they did work at home at least once per week
Population proportion of employed individuals who work at home at least once per week P = 
Q=1-P= 1-0.205 = 0.705
<u>step 2:-</u>
Now 
=0.0015
<u>step 3:-</u>
<u>Confidence intervals</u>
<u>using formula</u>


=0.20113,0.20887[/tex]
<u>conclusion:</u>-
99% of confidence interval for the population proportion of employed individuals who work at home at-least once per week
//0.20113,0.20887[/tex]
Answer:
D.
90 x 1/2 = 45 km
The rate is 90 miles per hour and 30/60=1/2 so we multiply 1/2
Hope this helps
Step-by-step explanation:
Well you need to explain what is going on here so try to rephrase this.
Answer:
Step-by-step explanation:
Let 
Subbing in:

a = 9, b = -2, c = -7
The product of a and c is the aboslute value of -63, so a*c = 63. We need 2 factors of 63 that will add to give us -2. The factors of 63 are {1, 63}, (3, 21}, {7, 9}. It looks like the combination of -9 and +7 will work because -9 + 7 = -2. Plug in accordingly:

Group together in groups of 2:

Now factor out what's common within each set of parenthesis:

We know this combination "works" because the terms inside the parenthesis are identical. We can now factor those out and what's left goes together in another set of parenthesis:

Remember that 
so we sub back in and continue to factor. This was originally a fourth degree polynomial; that means we have 4 solutions.

The first two solutions are found withing the first set of parenthesis and the second two are found in other set of parenthesis. Factoring
gives us that x = 1 and -1. The other set is a bit more tricky. If
then
and

You cannot take the square root of a negative number without allowing for the imaginary component, i, so we do that:
±
which will simplify down to
±
Those are the 4 solutions to the quartic equation.