In this problem, we need to use the ideal gas law. The following is the formula used in ideal gas law: PV = nRT, where n refers to the moles and R is the gas constant.
Given
P = 10130.0 kPa
V = 50 L
T = 300 degree celcius + 273.15 = 573.15 K
R = 8.314 L. kPa/K.mol
Solution
To get the moles which represent the "n" in the formula, we need to rearrange the equation.
PV = nRT PV
---- ------ ---> n = --------
RT RT RT
10130.0 kPa x 50 L
n= ---------------------------------------------
8.314 L. kPa/K.mol x 573.15 K
506,500
= ----------------------------
4,765.17 mol K
=106.29 mol Ar
So the moles of argon gas is 106.29 moles
Answer:
λ = 0.0167 m = 16.7 mm
Explanation:
The wavelength of these radio waves can be found out by using the formula for the speed of radio waves:
v = fλ
where,
v = speed of radio waves = speed of light = 3 x 10⁸ m/s
f = frequency of radio waves = 18 GHz = 18 x 10⁹ Hz
λ = Wavelength = ?
Therefore,
3 x 10⁸ m/s = (18 x 10⁹ Hz)λ
λ = (3 x 10⁸ m/s)/(18 x 10⁹ Hz)
<u>λ = 0.0167 m = 16.7 mm</u>
Answer:
its already in scientific notation form however its ordinary or real form is -0.005682
Explanation:
scientific notation
when a number is expressed with some power of 10 multiplied by a number between 1 to 10 is called scientific notation
Answer:
it is a infectiousr bacterial disease characterized by the growth of nodules(tubercles) in tissues especially the lungs