<span>The question says,'Mathew was working with different concentrations of hydrochloric acid in the lab. Which of these would best describe the resulsts Mathew would see if he was using a conductivity apparatus in each of the different acid concentration. The correct answer is C. This is because, acids conduct electricity, the stronger the acid, the brighter the electricity that will be produced while the weaker the acid, the weaker the electricity that will be produced. Thus, higher concentration equals tronger electricity.</span>
Answer:
0.036 M of 
Explanation:
It is an example of acid-base neutralization reaction.
KOH +
---->
+ 
Base Acid Salt
When two component react then the number of moles of both the component should be same, therefore the number of moles and acids and bases should be the same in the following .
Molarity= 
No.of moles= Molarity × Volume of the Particular Solution
Therefore,
------------------------------(1)
where
= Molarity of Acid
= Volume of Acid
= Molarity of Base
= Volume of Base
=0.3330 M
=10.62 mL
=98.2 mL
=??(in M)
Plugging in Equation 1,
0.3330 × 10.62 =
× 98.2
=
=0.036 M
The answer is D. oversaturated. The term to represent the solution contains more solid solute than saturated solution is supersaturated, not oversaturated.
The answer is B or the second answer
Answer:
Molarity = 0.21 M
Explanation:
Moles <em>solute </em>(mol) = Volume <em>solution</em> (L) x Molarity <em>solution </em>(M)
0.56 mol NaCl = 2.7 L x M
M = 0.2074074074