Answer : The molar volume of the gas will be, 44.82 L
Solution :
Using ideal gas equation,

where,
n = number of moles of gas = 1 mole
P = pressure of the gas = 0.5 atm
T = temperature of the gas = 273 K
R = gas constant = 0.0821 Latm/moleK
V = volume of the gas.
Now put all the given values in the above equation, we get the molar volume of the gas.


Therefore, the molar volume of the gas will be, 44.82 L
Answer:
T₁ = 135.41 K
Explanation:
Given data:
Initial pressure = 1.12 atm
Finial temperature = 36.5 °C (36.5 +273 = 309.5 K)
Initial temperature = ?
Final pressure = 2.56 atm
Formula:
P₁/T₁ = P₂/T₂
P₁ = Initial pressure
T₁ = Initial temperature
P₂ = Final pressure
T₂ = Final temperature
Solution:
P₁/T₁ = P₂/T₂
T₁ = P₁T₂ /P₂
T₁ = 1.12 atm × 309.5 K / 2.56 atm
T₁ = 346.64 atm . K / 2.56 atm
T₁ = 135.41 K
Only when there is no product that is when a chemical reaction has not occured
Answer: The balanced reaction is:
<span>2 C6H14(g)+ 19 O2(g) → 12 <span>CO2</span>(g)+ 14 H2O(g)
Note: While balancing the chemical reaction, care must be taken that total number atoms (of each type) on both reactant and product side must be same. In present case, there are 12 'C' atoms, 28 'H' atoms and 38 'O' atoms on both reactant and product side. Hence, the reaction is balanced. </span>