Answer:
Force exerted, F = 1.5 N
Explanation:
It is given that, a boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s.
i.e. u = 0
v = 30 m/s
Time taken, t = 0.06 s
Mass of the paper, m = 0.003 kg
We need to find the force the boxer exert on it. The force can be calculated using second law of motion as :



F = 1.5 N
So, the force the boxer exert on the paper is 1.5 N. Hence, this is the required solution.
Answer:
A. 1.4 m/s to the left
Explanation:
To solve this problem we must use the principle of conservation of momentum. Let's define the velocity signs according to the direction, if the velocity is to the right, a positive sign will be introduced into the equation, if the velocity is to the left, a negative sign will be introduced into the equation. Two moments will be analyzed in this equation. The moment before the collision and the moment after the collision. The moment before the collision is taken to the left of the equation and the moment after the collision to the right, so we have:

where:
M = momentum [kg*m/s]
M = m*v
where:
m = mass [kg]
v = velocity [m/s]

where:
m1 = mass of the basketball = 0.5 [kg]
v1 = velocity of the basketball before the collision = 5 [m/s]
m2 = mass of the tennis ball = 0.05 [kg]
v2 = velocity of the tennis ball before the collision = - 30 [m/s]
v3 = velocity of the basketball after the collision [m/s]
v4 = velocity of the tennis ball after the collision = 34 [m/s]
Now replacing and solving:
(0.5*5) - (0.05*30) = (0.5*v3) + (0.05*34)
1 - (0.05*34) = 0.5*v3
- 0.7 = 0.5*v
v = - 1.4 [m/s]
The negative sign means that the movement is towards left
Answer:
20,850 N
Explanation:
We can solve the problem by using second Newton's Law:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have:
m = 70 kg is the mass
is the acceleration (which is negative, because it is a deceleration)
So, we can use the equation above to find the force:

and the negative sign simply means that the force is in the opposite direction to the motion.