This problems a perfect application for this acceleration formula:
Distance = (1/2) (acceleration) (time)² .
During the speeding-up half: 1,600 meters = (1/2) (1.3 m/s²) T²
During the slowing-down half: 1,600 meters = (1/2) (1.3 m/s²) T²
Pick either half, and divide each side by 0.65 m/s²:
T² = (1600 m) / (0.65 m/s²)
T = square root of (1600 / 0.65) seconds
Time for the total trip between the stations is double that time.
T = 2 √(1600/0.65) = <em>99.2 seconds</em> (rounded)
For heating Solid, Liquid, Gas and for cooling the opposite Gas, Liquid, Solid
D. <span>Johannes Kepler argued that Earth was the center of the universe.
</span>
Answer:
Total momentum, p = 21.24 kg-m/s
Explanation:
Given that,
Mass of first piece, 
Mass of the second piece, 
Speed of the first piece,
(along x axis)
Speed of the second piece,
(along y axis)
To find,
The total momentum of the two pieces.
Solve,
The total momentum of two pieces is equal to the sum of momentum along x axis and along y axis.






The net momentum is given by :


p = 21.24 kg-m/s
Therefore, the total momentum of the two pieces is 21.24 kg-m/s.
Question: The force between a pair of 0.005 C is 750 N. What is the distance between them?
Answer:
17.32 m
Explanation:
From coulomb's Law,
F = kqq'/r²........................... Equation 1
Where F = Force between the force, q' and q = both charges respectively, k = coulomb's constant, r = distance between both charges.
make r the subject of the equation above
r = √(kqq'/F)..................... Equation 2
From the question,
Given: q = q' = 0.005 C, F = 750 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute these values into equation 2
r = √(9.0×10⁹×0.005×0.005/750)
r = √(300)
r = 17.32 m.
Hence the distance between the pair of charges = 17.32 m