1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vanyuwa [196]
3 years ago
8

2. Two long parallel wires each carry a current of 5.0 A directed to the east. The two wires are separated by 8.0 cm. What is th

e magnitude of the magnetic field at a point that is 5.0 cm from each of the wires
Physics
1 answer:
Gre4nikov [31]3 years ago
3 0

Answer:

The magnitude of magnetic field at given point = 5.33 × 10^{-5} T

Explanation:

Given :

Current passing through both wires = 5.0 A

Separation between both wires = 8.0 cm

We have to find magnetic field at a point which is 5 cm from any of wires.

From biot savert law,

We know the magnetic field due to long parallel wires.

⇒ B = \frac{\mu_{0}i }{2\pi R}

Where B = magnetic field due to long wires, \mu_{0} = 4\pi \times10^{-7}, R = perpendicular distance from wire to given point

From any one wire R_{1}  = 5 cm, R_{2}  = 3 cm

so we write,

∴ B = B_{1} + B_{2}

 B = \frac{\mu_{0} i}{2\pi R_{1} } +  \frac{\mu_{0} i}{2\pi R_{2} }

 B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]

 B = 5.33\times10^{-5}  T

Therefore, the magnitude of magnetic field at given point = 5.33\times10^{-5} T

You might be interested in
A thin, metallic spherical shell of radius 0.347 m0.347 m has a total charge of 7.53×10−6 C7.53×10−6 C placed on it. A point cha
USPshnik [31]

Answer:

E = 12640.78 N/C

Explanation:

In order to calculate the electric field you can use the Gaussian theorem.

Thus, you have:

\Phi_E=\frac{Q}{\epsilon_o}

ФE: electric flux trough the Gaussian surface

Q: net charge inside the Gaussian surface

εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2

If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

\Phi_E=EA=E(4\pi r^2)=\frac{Q}{\epsilon_o}\\\\E=\frac{Q}{4\pi \epsilon_o r^2}

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m

Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

Q=7.53*10^{-6}C+3.65*10^{-6}C=1.115*10^{-5}C

Finally, you obtain for E:

E=\frac{1.118*10^{-5}C}{4\pi (8.85*10^{-12C^2/Nm^2})(0.795m)^2}=12640.78\frac{N}{C}

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C

3 0
2 years ago
A 25.0 kg box of textbooks rests on a loading ramp that makes an angle α with the horizontal. The coefficient of kinetic frictio
Alekssandra [29.7K]

Answer:

The minimum angle at which the box starts to slip (rounded to the next whole number) is α=19°

Explanation:

In order to solve this problem we must start by drawing a sketch of the problem and its corresponding fre body diagram (See picture attached).

So, when we are talking about friction, there are two types of friction coefficients. Static and kinetic. Static friction happens when the box is not moving no matter what force you apply to it. You get to a certain force that is greater than the static friction and the box starts moving, it is then when the kinetic friction comes into play (kinetic friction is generally smaller than static friction). So in order to solve this problem, we must find an angle such that the static friction is the same as the force applie by gravity on the box. For it to be easier to analyze, we must incline the axis of coordinates, just as shown on the picture attached.

After doing an analysis of the free-body diagram, we can build our set of equations by using Newton's thrid law:

\sum F_{x}=0

we can see there are only two forces in x, which are the weight on x and the static friction, so:

-W_{x}+f_{s}=0

when solving for the static friction we get:

f_{s}=W_{x}

We know the weight is found by multiplying the mass by the acceleration of gravity, so:

W=mg

and:

W_{x}=mg sin \alpha

we can substitute this on our sum of forces equation:

f_{s}=mg sin \alpha

the static friction will depend on the normal force applied by the plane on the box, static friction is found by using the following equation:

f_{s}=N\mu_{s}

so we can substitute this on our equation:

N\mu_{s}=mg sin \alpha

but we don't know what the normal force is, so we need to find it by doing a sum of forces in y.

\sum F_{y}=0

In the y direction we got two forces as well, the normal force and the force due to gravity, so we get:

N-W_{y}=0

when solving for N we get:

N=W_{y}

When seeing the free-body diagram we can determine that:

W_{y}=mg cos \alpha

so we can substitute that in the sum of y-forces equation, so we get:

N=mg cos \alpha

we can go ahead and substitute this equation in the sum of forces in x equation so we get:

mg cos \alpha \mu_{s}=mg sin \alpha

we can divide both sides of the equation into mg so we get:

cos \alpha \mu_{s}=sin \alpha

as you may see, the angle doesn't depend on the mass of the box, only on the static coefficient of friction. When solving for \mu_{s} we get:

\mu_{s}=\frac{sin \alpha}{cos \alpha}

when simplifying this we get that:

\mu_{s}=tan \alpha

now we can solve for the angle so we get:

\alpha= tan^{-1}(\mu_{s})

and we can substitute the given value so we get:

\alpha= tan^{-1}(0.350)

which yields:

α=19.29°

which rounds to:

α=19°

8 0
3 years ago
In mammals, the weight of the heart is approximately 0.5% of the total body weight. Write a linear model that gives the heart we
hammer [34]

Answer:

1201 lbs

Explanation:

Given that in mammals, the weight of the heart is approximately 0.5% of the total body weight.

Let the weight of the heart of a mammal be H

And the weight of the total body be B

The linear model that can gives the heart weight in terms of the total body weight will be:

H = 0.005B

B.) To find the weight of the heart of a whale whose weight is 2.402 × 105 lbs, substitute the whole weight in the formula.

H = 0.005 × 2.402 × 10^5

H = 1201 lbs

Therefore, the weight of the heart of the whale is 1201 lbs

8 0
2 years ago
Help, please!!!!!<br> I just need help putting the vocab word in the box where it belongs.
Ber [7]

here's the first part but for the 2nd one all I know is that the word "compression" goes on the spirals that are closer together.

hope this helps!

8 0
2 years ago
Like the filters falling through the air, a car on the freeway represents an object with a high Reynolds number traveling throug
Goshia [24]

Answer:

ΔF=125.22 %

Explanation:

We know that drag force on the car given as

F_D=\dfrac{1}{2}\rho C_DA v^2

C_D=Drag coefficient

A=Projected area

v=Velocity

ρ=Density

All other quantity are constant so we can say that drag force and velocity can be given as

\dfrac{F_D_1}{F_D_2}=\dfrac{v_1^2}{v_2^2}

Now by putting the values

\dfrac{F_D_1}{F_D_2}=\dfrac{v_1^2}{v_2^2}

\dfrac{F_D_1}{F_D_2}=\dfrac{50^2}{75^2}

\dfrac{F_D_1}{F_D_2}=0.444

Percentage Change in the drag force

\Delta F=\dfrac{F_D_2-F_D_1}{F_D_1}\times 100

\Delta F=\dfrac{F_D_2-0.444F_D_2}{0.444F_D_2}\times 100

\Delta F=\dfrac{1-0.444}{0.444}\times 100

ΔF=125.22 %

Therefore force will increase by 125.22  %.

3 0
3 years ago
Other questions:
  • Point charge A with a charge of +4.00 μC is located at the origin. Point charge B with a charge of +7.00 μC is located on the x
    12·2 answers
  • HELP ASAP!!! So stressed! :(
    6·1 answer
  • IF a rock has a mass of 92,224 kg, what is it's weight?
    7·1 answer
  • Technician A says that the manual valve position is controlled by the shift lever. Technician B says that the manual valve posit
    11·1 answer
  • Which of the following characteristics of stars is affected by a stars temperature?
    11·1 answer
  • If the mass of a material is 45 grams and the volume of the material is 11 cm^3, what would the density of the material be?
    13·2 answers
  • A cabinet weighing 100 N is placed on a floor. The amount of contact area between the cabinet and the floor is 0.5 m2. How much
    5·1 answer
  • 11. 2 cm of rain falls in 10 minutes. The rain fall
    8·1 answer
  • For an object like a planet, with a typical temperature of a few hundred kelvin, what kind of blackbody radiation would it princ
    9·1 answer
  • The graph shows the layers of Earth's atmosphere. Which statement best describes the relationship between temperature and altitu
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!