1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
3 years ago
12

Simplify the following expression 1/3+7/15

Mathematics
1 answer:
vladimir1956 [14]3 years ago
6 0

Answer:

4/5 (Decimal:0.8)

Step-by-step explanation:

Simplify:

1/3 + 7/15

5/15 + 7/15

5+7/15

12/15=4/5(Decimal:0.8)

You might be interested in
The weight of an object on Venus is about 9/10 of its weight on earth. The weight of an object on Jupiter is about 13/5 times it
kondaur [170]
The weight on earth would be 25.56 lb
5 0
4 years ago
82 young musicians attended a jazz camp. 35 of them were singers.
olga55 [171]

Answer:

35/82 is the probability of picking a singer

5 0
2 years ago
The following values represent exponential function ƒ(x) and linear function g(x). ƒ(1) = 2 g(1) = 2.5
tatuchka [14]
The function f(x) does not have a value of x that satisfies the given solutions, while the function g(x)=1.5+1. 
6 0
4 years ago
Read 2 more answers
I need this answer quickly
iragen [17]
X = 23 is the answer
7 0
3 years ago
Read 2 more answers
Find the solution of the differential equation f' (t) = t^4+91-3/t
Lynna [10]

Answer:

\displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f'(t) = t^4 + 91 - \frac{3}{t}

\displaystyle f(1) = \frac{1}{4}

<u>Step 2: Integration</u>

<em>Integrate the derivative to find function.</em>

  1. [Derivative] Integrate:                                                                                   \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - \frac{3}{t}} \, dt
  2. Simplify:                                                                                                         \displaystyle f(t) = \int {t^4 + 91 - \frac{3}{t}} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:                               \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:                     \displaystyle f(t) = \frac{t^5}{5} + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:                   \displaystyle f(t) = \frac{t^5}{5} + 91t - \int {\frac{3}{t}} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3\int {\frac{1}{t}} \, dt
  7. [3rd Integral] Integrate:                                                                                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C

Our general solution is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C.

<u>Step 3: Find Particular Solution</u>

<em>Find Integration Constant C for function using given condition.</em>

  1. Substitute in condition [Function]:                                                               \displaystyle f(1) = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  2. Substitute in function value:                                                                         \displaystyle \frac{1}{4} = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  3. Evaluate exponents:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3ln|1| + C
  4. Evaluate natural log:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3(0) + C
  5. Multiply:                                                                                                         \displaystyle \frac{1}{4} = \frac{1}{5} + 91 - 0 + C
  6. Add:                                                                                                               \displaystyle \frac{1}{4} = \frac{456}{5} - 0 + C
  7. Simplify:                                                                                                         \displaystyle \frac{1}{4} = \frac{456}{5} + C
  8. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle -\frac{1819}{20} = C
  9. Rewrite:                                                                                                         \displaystyle C = -\frac{1819}{20}
  10. Substitute in <em>C</em> [Function]:                                                                             \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

∴ Our particular solution to the differential equation is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

7 0
3 years ago
Other questions:
  • Complete the missing reasons in the proof below
    10·1 answer
  • Please help me properties of arithmatic
    14·2 answers
  • We learned in Chapter 13, Exercise 35 that the Paralyzed Veterans of America recently sent letters to a random sample of 100,000
    14·1 answer
  • Carpenter A charges $50 an hour. Carpenter B charges $20 to visit your home plus $45 for each hour. For how many hours will the
    11·1 answer
  • Henry's current age is 10 times Justin's current age. In 6 years Henry's age will be 4 times Justin's age. Which system of equat
    6·1 answer
  • ASAP ASAP ASAP ASAP ILL SUBTO YOU IF YU ANSWER
    7·1 answer
  • The answer pls pls pls place
    10·1 answer
  • Jordan wants to buy a bike that usually sells for $80.00. The store is having a sale and all merchandise is discounted by 20%.
    10·1 answer
  • David earns $8 per hour. He works 40 hours each week. How much does he earn after 6 weeks
    7·1 answer
  • The prime factorizations of 54 and 72 are shown below.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!