Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
A pure substance that is made up of only one kind of atom is called an element
Answer:
y = 43.55 + 2.15t
Explanation:
We were told that in 1983, the per capita consumption was 37.1 pounds, and in 1989 it was 50 pounds.
If we assume t = 0 corresponds to year 1980. Then, for 1983 it will be t = 3 and for 1989,it will be t = 9.
Thus, expressing the information as ordered pairs, we have; (3,37. 1) and (9,50).
Let us now find slope of the linear function:
m1 = (y2 - y1)/(t2 - t1)
m1 = (50 - 37.1)/(9 - 3)
m1 = 2.15
So, we can find the linear equation as;
y - 37.1 = 2.15(t - 3)
y = 37.1 + 2.15t - 6.45
y = 43.55 + 2.15t