Answer:
5.43 x 10^-3 Nm
Explanation:
N = 52.5, radius, r = 5.35 cm = 0.0535 m, B = 0.455 T, I = 25.3 mA = 0.0253 A
Torque = N I A B Sin theta
Here, theta = 90 degree
Torque = 52.5 x 0.0253 x 3.14 x 0.0535 x 0.0535 x 0.455
Torque = 5.43 x 10^-3 Nm
Icy/Snowy roads have less friction than normal roads. This means that the wheels are less likely to stay positioned because of traction, and you will spin out of control
Answer:
yes
Explanation:
Let's solve your equation step-by-step.
4x+3=−5
Step 1: Subtract 3 from both sides.
4x+3−3=−5−3
4x=−8
Step 2: Divide both sides by 4.
4x / 4 = −8 / 4
x=−2
Hope it helps,
Please mark me as the brainliest
Thank you
Answer:
Velocity is 1.73 m/s along 54.65° south of east.
Explanation:
Let unknown velocity be v, mass of billiard ball be m and east direction be positive x axis.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = m x 2i + m x (-1)i = m i
Final momentum = m x v + m x 1.41 j = mv + 1.41 m j
Comparing
mi = mv + 1.41 m j
v = i - 1.41 j
Magnitude of velocity
Direction,
Velocity is 1.73 m/s along 54.65° south of east.
Answer:
Part a)

Part b)

Part c)

Part d)

Part e)

Part f)

Part g)

Explanation:
Initial speed of the launch is given as
initial speed = 
angle =
degree
Now the two components of the velocity

similarly we have

Part a)
Now we know that horizontal range is given as

maximum height is given as

so we have

time of flight is given as



Part b)
Now the speed of the ball in x direction is always constant
so at the peak of its path the speed of the ball is given as



Part c)
Initial vertical velocity is given as


Part d)
Initial speed is given as

so we will have


Part e)
Angle of projection is given as



Part f)
If we throw at same speed so that it reach maximum height
then the height will be given as


Part g)
For maximum range the angle should be 45 degree
so maximum range is

