Answer:
A metal and a non-metal
Explanation:
Ionic bonds are formed between two or more atoms by the transfer of one or more electrons between atoms. Electron transfer produces negative ions called anions and positive ions called cations.
Answer : The concentration of HI (g) at equilibrium is, 0.643 M
Explanation :
The given chemical reaction is:

Initial conc. 0.10 0.10 0.50
At eqm. (0.10-x) (0.10-x) (0.50+2x)
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.0713 and x = 0.134
We are neglecting value of x = 0.134 because the equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.0713
The concentration of HI (g) at equilibrium = (0.50+2x) = [0.50+2(0.0713)] = 0.643 M
Thus, the concentration of HI (g) at equilibrium is, 0.643 M
I believe the answer would be D.
Moles of ammonia
- Given mass/Molar mass
- 230/17
- 13.5mol
1mol requires 5.66KJ energy
13.5mol requires