Answer:
- 18% of 34 = 6.12
- 27% of 81 = 21.87
- 85% of 74 = 62.9
- 54% of 90 = 48.6
- 33% of 360 = 118.8
- 62% of 75 = 46.5
- 4% of 56 = 2.24
- 6% of 140 = 8.4
- 12% of 625 = 75
- 5% of 134 = 6.7
- 90% of 44 = 39.6
- 9% of 17 = 1.53
- 48% of 20 = 9.6
- 70% of 69 = 48.3
- 2% of 800 = 16
-------------------------------------
- 30% of 2400 = 720 calories
--------------------------------------
- 80% of 175 = 140 beats per minute
Answer:
9
Step-by-step explanation:
inverse operations: 10 - 28 = 18 18 / 2 = 9
The values that correctly models the scenario of the rollercoaster graph will be:
- Red (x) = 6 + 4 × cos(πx/6) if 0 ≤ x < 6
- Green (x) = -2.5 × cos(π(x - 6)/4) + 4.5
- Purple (x) = 3.5 - 3.5 × sin(π(x - 12.5)/5)
<h3>How does the
graph model the situation</h3>
From the complete question,
For Red (x) = 6 + 4 × cos(πx/6) if 0 ≤ x < 6
where at x = 0, Red(x) = 10,
at x = 5, Red(x) = 2.5
For Green (x) = -2.5 × cos(π(x - 6)/4) + 4.5 if 6 ≤ x < 10
where at x = 10, Green (x) = 7,
at x = 6, Green (x) = 2.0
For Purple (x) = 3.5 - 3.5 × sin(π(x - 12.5)/5) if 10 ≤ x ≤ 15
where at x = 10, Purple (x) = 7,
at x = 15, Purple (x) = 0
Learn more about graphs on:
brainly.com/question/25020119
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = 90° → A + B = 90° - C
→ C = 90° - (A + B)
Use the Double Angle Identity: cos 2A = 1 - 2 sin² A
→ sin² A = (1 - cos 2A)/2
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]
Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B
Use the Cofunction Identities: cos (90° - A) = sin A
sin (90° - A) = cos A
<u>Proof LHS → RHS:</u>
LHS: sin² A + sin² B + sin² C

![\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A%2B2B%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2B%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%2B%5Csin%5E2%20C%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1-%5Ccos%20%28A%2BB%29%5Ccdot%20%5Ccos%20%28A-B%29%2B%5Csin%5E2%20C)
Given: 1 - cos (90° - C) · cos (A - B) + sin² C
Cofunction: 1 - sin C · cos (A - B) + sin² C
Factor: 1 - sin C [cos (A - B) + sin C]
Given: 1 - sin C[cos (A - B) - sin (90° - (A + B))]
Cofunction: 1 - sin C[cos (A - B) - cos (A + B)]
Sum to Product: 1 - sin C [2 sin A · sin B]
= 1 - 2 sin A · sin B · sin C
LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C 