Answer:
<em>Diameter Length: ( About ) 5.4 km; Option B</em>
Step-by-step explanation:
~ Let us apply the Area of the Circle formula πr^2, where r ⇒ radius of the circle ~
1. We are given that the area of the circle is 22.9 km^2, so let us substitute that value into the area of the circle formula, solving for r ( radius ) ⇒ 22.9 = π * r^2 ⇒ r^2 = 22.9/π ⇒ r^2 = 7.28929639361.... ⇒
<em>radius = ( About ) 2.7</em>
2. The diameter would thus be 2 times that of the radius by definition, and thus is: 2.7 * 2 ⇒ ( About ) 5.4 km
<em>Diameter Length: ( About ) 5.4 km</em>
Answer:
(a). 72.9%.
(b). 13.6 hr.
Step-by-step explanation:
So, we are given the following data or parameters or information which is going to assist us in solving this question/problem;
=> "A welder produces 7 welded assemblies during the first day on a new job, and the seventh assembly takes 45 minutes (unit time). "
=> The worker produces 10 welded assemblies on the second day, and the 10th assembly on the second day takes 30 minutes"
So, we will be making use of the Crawford learning curve model.
T(7) + 10 = T (17) = 30 min.
T(7) = T1(7)^b = 45.
T(17 ) = T1(17)^b = 30.
(T1) = 45/7^b = 30/17^b.
45/30 = 7^b/17^b = (7/17)^b.
1.5 = (0.41177)^b.
ln 1.5 = b ln 0.41177.
0.40547 = -0.8873 b.
b = - 0.45696.
=> 2^ -0.45696 = 0.7285.
= 72.9%.
(b). T1= 45/7^ - 045696 = 109.5 hr.
V(TT)(17) = 109.5 {(17.51^ - 0.45696 – 0.51^ - 0.45696) / (1 - 0.45696)} .
V(TT) (17) = 109.5 {(4.7317 - 0.6863) / 0.54304} .
= 815.7 min .
= 13.595 hr.
It’s $1,903 Bc i just did that question
This is in slope-intercept form, so you can think of it as being y=mx+b. Invert m (the slope) and flip its sign, and then substitute the x and y values in and solve for b. The answer is y=7/2x-20.
Answer:
y = 16/9
Step-by-step explanation:
Assuming "y" is a variable
3y - 6/9 = 4 - 2/-3
3y - 2/3 =14/3
3y - 16/3 = 0
1/3 (9y - 2) = 14/3
ANSWER = y : 16/9