Answer:
0.7bar
Step-by-step explanation:
(32-18)/18
=14/18
=7/9
=0.7bar
The difference between the 2 times would be .055 seconds...
Check the picture below.
now, the "x" is a constant, the rocket is going up, so "y" is changing and so is the angle, but "x" is always just 15 feet from the observer. That matters because the derivative of a constant is zero.
now, those are the values when the rocket is 30 feet up above.
![\bf tan(\theta )=\cfrac{y}{x}\implies tan(\theta )=\cfrac{y}{15}\implies tan(\theta )=\cfrac{1}{15}\cdot y \\\\\\ \stackrel{chain~rule}{sec^2(\theta )\cfrac{d\theta }{dt}}=\cfrac{1}{15}\cdot \cfrac{dy}{dt}\implies \cfrac{1}{cos^2(\theta )}\cdot\cfrac{d\theta }{dt}=\cfrac{1}{15}\cdot \cfrac{dy}{dt} \\\\\\ \boxed{\cfrac{d\theta }{dt}=\cfrac{cos^2(\theta )\frac{dy}{dt}}{15}}\\\\ -------------------------------\\\\ ](https://tex.z-dn.net/?f=%5Cbf%20tan%28%5Ctheta%20%29%3D%5Ccfrac%7By%7D%7Bx%7D%5Cimplies%20tan%28%5Ctheta%20%29%3D%5Ccfrac%7By%7D%7B15%7D%5Cimplies%20tan%28%5Ctheta%20%29%3D%5Ccfrac%7B1%7D%7B15%7D%5Ccdot%20y%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bchain~rule%7D%7Bsec%5E2%28%5Ctheta%20%29%5Ccfrac%7Bd%5Ctheta%20%7D%7Bdt%7D%7D%3D%5Ccfrac%7B1%7D%7B15%7D%5Ccdot%20%5Ccfrac%7Bdy%7D%7Bdt%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bcos%5E2%28%5Ctheta%20%29%7D%5Ccdot%5Ccfrac%7Bd%5Ctheta%20%7D%7Bdt%7D%3D%5Ccfrac%7B1%7D%7B15%7D%5Ccdot%20%5Ccfrac%7Bdy%7D%7Bdt%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7B%5Ccfrac%7Bd%5Ctheta%20%7D%7Bdt%7D%3D%5Ccfrac%7Bcos%5E2%28%5Ctheta%20%29%5Cfrac%7Bdy%7D%7Bdt%7D%7D%7B15%7D%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A)
Answer:
12
3 x 4
if its one unit then you just multiply the sides in this case 3 x 4