The solutions to the given system of equations is (0, -6) and (1, -5)
<h3>Simultaneous equations</h3>
From the question, we are to determine the solutions to the given system of equations
The equations are
x − y = 6 --------- (1)
y = x² −6 ---------- (2)
From equation (1)
x - y = 6
∴ x = 6 + y ------- (3)
Substitute into equation (2)
y = x² −6
y = (6+y)² −6
y = (6+y)(6+y) -6
y = 36 + 6y + 6y +y² -6
y = 36 + 12y + y² - 6
Simplifying
y² + 12y - y + 30 = 0
y² + 11y + 30 = 0
Solve quadratically
y² + 11y + 30 = 0
y² + 6y + 5y + 30 = 0
y(y +6) +5 (y +6) = 0
(y + 5)(y + 6) = 0
y + 5 = 0 OR y + 6 = 0
y = -5 OR y = -6
Substitute the values of y into equation (3)
x = 6 + y
When y = -5
x = 6 + (-5)
x = 6 -5
x = 1
When y = -6
x = 6 + (-6)
x = 6 -6
x = 0
∴ When x = 0, y = -6 and when x = 1, y = -5
Hence, the solutions to the given system of equations is (0, -6) and (1, -5)
Learn more on Solving simultaneous equations here: brainly.com/question/16863577
#SPJ!
Inches of snow Greensboro gets = g
Inches of snow Redville gets = r

Redville gets
5 inches of snow.
Step-by-step explanation:
2x-5=2x-6. First you collect like terms
2x-2x=-6+5
0=-1
This statement is false 0≠-1
Number one is 12. There is 12 cubes.
Answer:
>
Step-by-step explanation:
-3+7= 4
-10-2= -12
4> -12