Answer:
see below
Step-by-step explanation:
The tangent function has been shifted upward by 2 units, but there has been no horizontal scaling. Any horizontal offset must be equal to some number of whole periods.
Choices A and B show tan( )+2, the correct vertical offset. However, choice A has a horizontal scale factor of 2. The correct choice is B, which has no horizontal scaling (the coefficient of x is 1) and a horizontal offset of π, one full period.
_____
<em>Comment on horizontal scaling</em>
Horizontal scaling is different from vertical scaling in that using k·x in place of x <em>compresses</em> the graph horizontally by a factor of k. On the other hand, using k·f(x) in place of f(x) <em>expands</em> the graph vertically by a factor of k.
Who’s thattt IS THAT A BOT OR SOMETHINF AND DO U NEED HELP?
Answer:
<h2>-8</h2>
Step-by-step explanation:
![4-3[6-2(4-3)]\\\\Follow\:the\:PEMDAS\:order\:of\:operations\\\\\mathrm{Calculate\:within\:parentheses}\:\left[6-2\left(4-3\right)\right] : 4\\\\=4-3\times\:4\\\\\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:3\times\:4\::\quad 12\\=4-12\\\\\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:4-12\:\\\\:\quad -8](https://tex.z-dn.net/?f=4-3%5B6-2%284-3%29%5D%5C%5C%5C%5CFollow%5C%3Athe%5C%3APEMDAS%5C%3Aorder%5C%3Aof%5C%3Aoperations%5C%5C%5C%5C%5Cmathrm%7BCalculate%5C%3Awithin%5C%3Aparentheses%7D%5C%3A%5Cleft%5B6-2%5Cleft%284-3%5Cright%29%5Cright%5D%20%3A%204%5C%5C%5C%5C%3D4-3%5Ctimes%5C%3A4%5C%5C%5C%5C%5Cmathrm%7BMultiply%5C%3Aand%5C%3Adivide%5C%3A%5Cleft%28left%5C%3Ato%5C%3Aright%5Cright%29%7D%5C%3A3%5Ctimes%5C%3A4%5C%3A%3A%5Cquad%2012%5C%5C%3D4-12%5C%5C%5C%5C%5Cmathrm%7BAdd%5C%3Aand%5C%3Asubtract%5C%3A%5Cleft%28left%5C%3Ato%5C%3Aright%5Cright%29%7D%5C%3A4-12%5C%3A%5C%5C%5C%5C%3A%5Cquad%20-8)
Answer:
$110 and $30
Step-by-step explanation:
To solve this, we need to know the total share which is,

Then, you need to know the fraction of the share over the total, such that



So if to find how much that'll be of the $180 for the largest and smallest share,
Largest:

Smallest:

Think it would be true although I don’t know what the transistive property is.
Hope this helps!