There are two bags: a bag with 4 blue marbles and 6 black marbles and another one containing 6 blue marbles and <span>6 black marbles. the probability of getting a blue marble in the first bag is 6/10 or 3/5 while that on the second bag is 6/12 or 1/2. Hence the total probability of getting two marbles is c. 3/10. </span>
Answer:
Step-by-step explanation:
Multiply each term of the first polynomial with the second polynomial. Then combine the like terms.
(3a<em>² + 5a - 2)* (5a² -3a + 4)</em>
<em> = 3a² *(5a² -3a + 4) + 5a*(5a² -3a + 4) - 2*(5a² -3a + 4)</em>
<em>=3a²*5a² - 3a*3a² + 4*3a² + 5a*5a² - 3a*5a + 4*5a + 5a²*(-2) - 3a*(-2) + 4*(-2)</em>
<em>=15a⁴ - 9a³ + 12a² + 25a³ - 15a² + 20a - 10a² + 6a - 8</em>
<em>= 15a⁴ </em><u><em>- 9a³ + 25a³</em></u><em> +</em><u><em> 12a² - 15a² - 10a²</em></u><em> +</em><u><em> 20a +6a </em></u><em>- 8</em>
<em>= 15a⁴ + 16a³ - 13a² +26a - 8</em>