Cortical areas that are not primarily concerned with sensory motor or language functions are cortical associated areas.
The cortex association areas are the areas, which perform the function of detection of stimulus, which cannot be easily detected by the help of the primary cortex.
They are not directly concerned with the sensory and motor information. They are mainly responsible for the interpretation, integration, and generation of action on the information from other areas of cortex.
Answer:
C. glycosylation
Explanation:
The maturation-promoting factor (MPF) is a cell cycle checkpoint that stimulates the passage from G2 (prophase) to M phase (metaphase). MPF also determines that DNA replication during the S (synthesis) phase did not produce any mutations. MPF is inactivated by kinase phosphorylation and activated by specific phosphatases capable of dephosphorylating this protein. On the other hand, glycosylation is a posttranslational modification where a carbohydrate (i.e., a glycan) is added to a functional group of another molecule. Many proteins undergo glycosylation, thereby playing a critical role in regulating protein function.
The right answer is A.) DNA in mitochondria
.
Eukaryotic cells, with their many intracellular organelles, have long been considered progeny of prokaryotes that would have become more complex as a result of genetic mutations. But from the 1960s, biologist Lynn Margulis proposed an alternative explanation that was first received coldly by the scientific community. His endosymbiotic theory, proposed in a more formal way in a 1981 book, proposes that eukaryotic cells as we know them today would be the result of a series of symbiotic associations with different prokaryotes.
Mitochondria and chloroplasts also have their own DNA that is not trapped in a nucleus, which is also the case with prokaryotes. However, the proteins encoded by this DNA do not cover all mitochondrial proteins. The prokaryote is thought to have lost some genes to the nucleus of the cell, a process known as "endosymbiotic gene transfer". For this reason, mitochondria and chloroplasts are now host-dependent for the synthesis of most of their components.