Transpiration is the process by which moisture is carried through plants from roots to small pores on the underside of leaves, where it changes to vapor and is released to the atmosphere. Transpiration is essentially evaporation of water from plant leaves. Transpiration also includes a process called guttation, which is the loss of water in liquid form from the uninjured leaf or stem of the plant, principally through water stomata.
Studies have revealed that about 10 percent of the moisture found in the atmosphere is released by plants through transpiration. The remaining 90 percent is mainly supplied by evaporation from oceans, seas, and other bodies of water (lakes, rivers, streams).
Transpiration and plant leaves
Plants put down roots into the soil to draw water and nutrients up into the stems and leaves. Some of this water is returned to the air by transpiration (when combined with evaporation, the total process is known as evapotranspiration). Transpiration rates vary widely depending on weather conditions, such as temperature, humidity, sunlight availability and intensity, precipitation, soil type and saturation, wind, land slope, and water use and diversion by people. During dry periods, transpiration can contribute to the loss of moisture in the upper soil zone, which can have an effect on vegetation and food-crop fields.
The question is incomplete. The complete question is:
Question: Why do organisms without oxygen need to convert pyruvate to lactate?
A) because pyruvate is toxic to the cells
B) in order to regenerate NAD+
C) in order to use lactate in the citric acid cycle
D) because lactate is needed to produce ATP
Answer:
B) in order to regenerate NAD+
Explanation:
Kreb's cycle and electron transport chain (ETC) are the aerobic stages of cellular respiration. ETC regenerates NAD+ and FAD+ by oxidation of NADH and FADH2 produced during glycolysis and Kreb's cycle. Here, oxygen serves as the terminal electron acceptor.
Glycolytic reactions use NAD+ as an electron acceptor and produce NADH. Therefore, a constant supply of NAD+ is required to sustain glycolysis. In absence of oxygen, ETC cannot occur and organisms convert pyruvate into lactate. Pyruvate is reduced in lactate and NADH serves as the electron donor. Thereby, lactate fermentation regenerates NAD+ to continue the process of glycolysis.
The lymph system creates extra white blood cells.
Answer:
No because he heated the solution, causing the starch and saliva to emulsify
Explanation:
Answer:
I'm gonna say that they are both mammals
srry if this is not helpful