Answer:
1290 atm
Explanation:
P1V1=P2V2
P2= (P1V1)/V2
P2=(2.15 atm * 750 mL)/(1.25 mL)
P2=1290 atm
Answer:
% weight of nickle = 24 %
Explanation:
molar mass of Nickel Sulfamate (Ni(SO₃NH₂)₂) = 250.87 g/mol
Solution
1st we write down the molar mass of Ni
molar mass of Ni = 59 g/mol
now we write down the number of moles of Ni in (Ni(SO₃NH₂)₂)
number of moles of Ni = 1 mol
Now we calculate the mass of nickle present in (Ni(SO₃NH₂)₂)
<em> mass = moles × molar mass</em>
mass = 1 mol × 59 g/mol
mass = 59 g
now we calculate the % weight of nickle in (Ni(SO₃NH₂)₂)
<em> % weight = (weight of element ÷ total weight) × 100</em>
% weight of nickle = (59 ÷ 250.87) × 100
% weight of nickle = 0.24 × 100
% weight of nickle = 24 %
Answer:
Option B. A tractor–trailer traveling at 80 kph.
Explanation:
Kinetic energy can be defined as the energy possessed by a body in motion. Mathematically, it is expressed as:
K.E = ½mv²
Where:
K.E is the kinetic energy.
m is the mass of the object.
v is the velocity of the object.
From the equation, K.E = ½mv²,
We can say that the kinetic energy (K.E), is directly proportional to both the mass (m) and square of the velocity (v). This implies that the greater the mass of an object, the greater the kinetic energy and the smaller the mass, the smaller the kinetic energy.
Now, considering the options given in question above, it is evident that the tractor–trailer has a greater mass than the car, cheetah and motor cycle. Hence, the tractor–trailer will have a greater kinetic energy even though they are traveling with the same velocity.
<span>Hydroxide ions as the only negative ions</span>