There's an infinite number of equivalent fractions for 24/30 - all you need to do is to divide or multiple both numerator and denominator by the same number. For example:
24/30 = 48/60 (because 24 * 2 = 48 and 30 * 2 = 60)
24/30 = 12/15 (because 24 ÷ 2 = 12 and 30 ÷ 2 = 15)
24/30 = 72/90 (because 24 * 3 = 72 and 30 * 3 = 90)
24/30 = 4/5 (because 24 ÷ 6 = 4 and 30 ÷ 6 = 5)
etc...
Answer:
65 feet and 2 inches
Step-by-step explanation:
to find the area of a rectangle you need to multiply length times width in this case 17" times 3'10". But first you must convert everything into the same form(in this case feet) so first you can convert everything to inches by multiplying 3 times 12 which gives you 36 then add the 10, so it is now 46 inches then multiply that by 17 and altogether it is 782 inches, then divide by 12 (to convert it back to feet) and the answer is 65.1666666667. After you can round and get 65 feet and 2 inches.
Answer:

Step-by-step explanation:
A complex number is defined as z = a + bi. Since the complex number also represents right triangle whenever forms a vector at (a,b). Hence, a = rcosθ and b = rsinθ where r is radius (sometimes is written as <em>|z|).</em>
Substitute a = rcosθ and b = rsinθ in which the equation be z = rcosθ + irsinθ.
Factor r-term and we finally have z = r(cosθ + isinθ). How fortunately, the polar coordinate is defined as (r, θ) coordinate and therefore we can say that r = 4 and θ = -π/4. Substitute the values in the equation.
![\displaystyle \large{z=4[\cos (-\frac{\pi}{4}) + i\sin (-\frac{\pi}{4})]}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7Bz%3D4%5B%5Ccos%20%28-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%20%2B%20i%5Csin%20%28-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5D%7D)
Evaluate the values. Keep in mind that both cos(-π/4) is cos(-45°) which is √2/2 and sin(-π/4) is sin(-45°) which is -√2/2 as accorded to unit circle.

Hence, the complex number that has polar coordinate of (4,-45°) is 
C. 9^4
when dividing with exponents, i usually just look at the exponents and subract them so i did 12-8 for this problem