The answer is C.) x = 7; x = -6
Answer:
x = 25, y = 9
Step-by-step explanation:
Since the triangles are congruent then corresponding angles and sides are congruent, thus
∠ O = ∠ P , substitute values
6y - 14 = 40 ( add 14 to both sides )
6y = 54 ( divide both sides by 6 )
y = 9
and
NG = IT , that is
x - 2y = 7 ( substitute y = 9 into the equation )
x - 2(9) = 7
x - 18 = 7 ( add 18 to both sides )
x = 25
Answer:
Step-by-step explanation:
Here we are given that the value of sinA is √3-1/2√2 , and we need to prove that the value of cos2A is √3/2 .
<u>Given</u><u> </u><u>:</u><u>-</u>
•
<u>To</u><u> </u><u>Prove</u><u> </u><u>:</u><u>-</u><u> </u>
•
<u>Proof </u><u>:</u><u>-</u><u> </u>
We know that ,
Therefore , here substituting the value of sinA , we have ,
Simplify the whole square ,
Add the numbers in numerator ,
Multiply it by 2 ,
Take out 2 common from the numerator ,
Simplify ,
Subtract the numbers ,
Simplify,
Hence Proved !
Let's assume two variables x and y which represent the local and international calls respectively.
x + y = 852 = total number of minutes which were consumed by the company (equation 1)
0.06*x+ 0.15 y =69.84 = total price which was charged for the phone calls (Equation 2)
from equation 1:-
x=852 -y (sub in equation 2)
0.06 (852 - y) + 0.15 y =69.84
51.12 -0.06 y +0.15 y =69.84 (subtracting both sides by 51.12)
0.09 y =18.74
y= 208 minutes = international minutes (sub in 1)
208+x=852 (By subtracting both sides by 208)
x = 852-208 = 644 minutes = local minutes