1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
4 years ago
6

Please help picture included!!

Mathematics
1 answer:
Triss [41]4 years ago
8 0
I think the answer is C
You might be interested in
A store selling newspapers orders only n = 4 of a certain newspaper because the manager does not get many calls for that publica
umka2103 [35]

Answer:

a) The expected value is 2.680642

b) The minimun number of newspapers the manager should order is 6.

Step-by-step explanation:

a) Lets call X the demanded amount of newspapers demanded, and Y the amount of newspapers sold. Note that 4 newspapers are sold when at least four newspaper are demanded, but it can be <em>more</em> than that.

X is a random variable of Poisson distribution with mean \mu = 3 , and Y is a random variable with range {0, 1, 2, 3, 4}, with the following values

  • PY(k) = PX(k) = ε^(-3)*(3^k)/k! for k in {0,1,2,3}
  • PY(4) = 1 -PX(0) - PX(1) - PX(2) - PX (3)

we obtain:

PY(0) = ε^(-3) = 0.04978..

PY(1) = ε^(-3)*3^1/1! = 3*ε^(-3) = 0.14936

PY(2) = ε^(-3)*3^2/2! = 4.5*ε^(-3) = 0.22404

PY(3) = ε^(-3)*3^3/3! = 4.5*ε^(-3) = 0.22404

PY(4) = 1- (ε^(-3)*(1+3+4.5+4.5)) = 0.352768

E(Y) = 0*PY(0)+1*PY(1)+2*PY(2)+3*PY(3)+4*PY(4) =  0.14936 + 2*0.22404 + 3*0.22404+4*0.352768 = 2.680642

The store is <em>expected</em> to sell 2.680642 newspapers

b) The minimun number can be obtained by applying the cummulative distribution function of X until it reaches a value higher than 0.95. If we order that many newspapers, the probability to have a number of requests not higher than that value is more 0.95, therefore the probability to have more than that amount will be less than 0.05

we know that FX(3) = PX(0)+PX(1)+PX(2)+PX(3) = 0.04978+0.14936+0.22404+0.22404 = 0.647231

FX(4) = FX(3) + PX(4) = 0.647231+ε^(-3)*3^4/4! = 0.815262

FX(5) = 0.815262+ε^(-3)*3^5/5! = 0.91608

FX(6) = 0.91608+ε^(-3)*3^6/6! = 0.966489

So, if we ask for 6 newspapers, the probability of receiving at least 6 calls is 0.966489, and the probability to receive more calls than available newspapers will be less than 0.05.

I hope this helped you!

8 0
4 years ago
A set of data is normally distributed with a mean of 75 and a standard deviation of 3. What percent of the data is in the
lord [1]

Answer:

Step-by-step explanation:

8 0
3 years ago
Find a geometric power series for the function, centered at 0, by the following methods. f(x) = 7/8 + x by the technique shown i
castortr0y [4]

Answer:

f(x) = 7/8 + n=0 = 7/8 so the answer you looking for would be: n=0

8 0
3 years ago
A. y = z - xz + w<br> B. y = wz - x<br> C. y = wz - xz<br> D. y = x(w - z)
Alexeev081 [22]

Answer:

y=zw-zx in other words c

Step-by-step explanation:

w= zx+y/z

zw=zx+y

y=zw-zx

7 0
3 years ago
Read 2 more answers
Un globo vuela entre dos ciudades A y B, que distan entre sí 1.500 m. Los tripulantes del globo ven la ciudad A con un ángulo de
enot [183]

Answer:

La altura del globo con respecto al suelo es 449,6 metros.

Step-by-step explanation:

La afirmación está incompleta. El enunciado completo es: "Un globo vuela entre dos ciudades A y B, que distan entre sí 1.500 m. Los tripulantes del globo ven la ciudad A con un ángulo de depresión de 27°, mientras que para ver la ciudad B es de 36°. ¿Cuál es la altura aproximada del globo con respecto al suelo?

El diagrama geométrico de la situación se encuentra descrita en el archivo adjunto. La altura aproximada del globo puede obtenerse con ayuda de las funciones trigonométricas, en este caso, se recomienda utilizar la función tangente de los ángulos de depresión:

Ciudad A

\tan 27^{\circ} = \frac{h}{1500\,m-x}

0,510 = \frac{h}{1500\,m-x}

Ciudad B

\tan 36^{\circ} = \frac{h}{x}

0,727 = \frac{h}{x}

Donde h y x son la altura con respecto al suelo y la distancia horizontal con respecto a la ciudad A.

A continuación, se elimina la altura de ambas ecuaciones por igualación y se determina la distancia horizontal del globo con respecto a la ciudad A:

0,727\cdot x = 0,510\cdot (1500\,m-x)

1,237\cdot x = 765\,m

x = 618,432\,m

Finalmente, la altura del globo con respecto al suelo es:

h = 0,727\cdot x

h = 0,727\cdot (618,432\,m)

h = 449,600\,m

La altura del globo con respecto al suelo es 449,6 metros.

6 0
4 years ago
Other questions:
  • What is the mean for the data set?
    15·1 answer
  • Graph the inequality<br> x - 2y&lt;0
    12·2 answers
  • A real estate agent has 1313 properties that she shows. She feels that there is a 40%40% chance of selling any one property duri
    11·1 answer
  • Fregue
    14·1 answer
  • a bottle of soft drinks costs $2. the commission paid on one bottle is 2% of the cost price.find the commission on 24 bottles of
    8·2 answers
  • Information is in the picture
    6·1 answer
  • Find the distance between the two points.<br> (3,-9) and (-93,-37)
    7·1 answer
  • Find the x- and y-intercepts of the graph of 4x + 4y = 20. State your answers as
    9·1 answer
  • (4-1/4+2/3)+(5+4/3-6/5)-(6+7/4+4/5)
    11·1 answer
  • May someone tell me why is this wrong?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!