Answer:
the letter f isn't stated at all so f is a good choice
Step-by-step explanation:
Answer:
mn
Step-by-step explanation:
how many 3 element subsets of {1, 2, 3, 4, 5, 6, 7, 8, ,9, 10, 11} are there for which the sum of the elements in the subset is
AURORKA [14]
Answer:
There are 155 ways in which these elements casn occur.
Step-by-step explanation:
We want 3 element subsets whose sum are multiples of 3
1+2+3= 6
1+2+6= 9
1+2+9= 12
1+9+11=21
1+3+5=9
1+4+8=12
1+5+6=12
1+6+8=15
1+7+10=18
1+8+9=18
1+9+11=21
2+3+7=12
2+4+6=12
2+4+9=15
2+5+11=18
2+6+7=15
2+7+9=18
2+8+5=15
2+8+11=21
2+9+10=21
3+6+9= 18
3+9+11=21
3+10+11=24
6+9+10=27
6+8+11=27
6+7+11=24
7+8+9= 24
8+9+10=27
7+9+11=27 .........
We have 11 elements
We need a combination of 3
The combinations can be in the form
even+ even+ odd
odd+odd+odd
even + odd+odd
So there are 3 ways in which these elements can occur
Total number of combinations with 3 elements =11C3= 165
There are 6 odd numbers and 5 even numbers.
Number of subsets with 3 odd numbers = 6C3= 20
Number of two even numbers and 1 odd number = 5C2*6C1=10*6= 60
Number of 2 odd and 1 even number = 6C2* 5C1= 5*15= 75
So 20+60+75=155
There are 155 ways in which this combination can occur
you would round it to 1.7 so aubra would be correct. This is because if the last digit in the number you are rounding id over 4 your round it up. For example 55 would round to 60.
4.34 would round to 4.30
Is something missing
???????????????????//