1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
3 years ago
9

Ms. Ramirez is throwing a fundraising event to

Mathematics
1 answer:
Juliette [100K]3 years ago
4 0
If you do $62 minus $35 it’s 27 and 27 divided by 4 is 6.75 so the raffle tickets are $6.75
You might be interested in
Please help! it’s urgent, can you please identify the answers that are inscribed?
nekit [7.7K]

Answer:

BCE and CED (first and last options on the list)

Step-by-step explanation:

Recall that an inscribed angle, by definition has to have its points sitting on the circumference of the circle.

Therefore, from the angles shown, those that contain the point "G" (which is NOT on the circle's circumference) will not be inscribed angles.

Those which are inscribed angles from the list are:

BCE and CED (first and last options on the list)

6 0
2 years ago
Abag is filled with green and blue marbles. There are 49 marbles in the bag. If there are 17 more green marbles than blue marble
Daniel [21]

Answer:

32 marbles are Green Marbles and 17 Blue Marbles.

Step-by-step explanation:

49 - 17 = 32

8 0
3 years ago
A ​6000-seat theater has tickets for sale at ​$26 and ​$40. How many tickets should be sold at each price for a sellout performa
ss7ja [257]

Answer:

x = number of tickets sold for $26 = 3900 tickets

y = number of tickets sold for $40 = 2100 tickets

Step-by-step explanation:

A ​6000-seat theater has tickets for sale at ​$26 and ​$40. How many tickets should be sold at each price for a sellout performance to generate a total revenue of ​$​185,400?

Let

x = number of tickets sold for $26

y = number of tickets sold for $40

x + y = 6000

x = 6000 - y

$26 × x + $40 × y= $185, 400

26x + 40y = 185400

Substitute

26(6000 - y) + 40y = 185400

156000 - 26y + 40y = 185400

Collect like terms

- 26y + 40y = 185400 - 156000

14y = 29400

y = 29400/14

y = 2100 tickets

x = 6000 - y

x = 6000 - 2100

x = 3900 tickets

Hence

x = number of tickets sold for $26 = 3900 tickets

y = number of tickets sold for $40 = 2100 tickets

5 0
2 years ago
if the pool has a constant depth of 1.5 meters, what is the volume of the pool? Rounded to the nearest tenth
Delicious77 [7]

Answer:

8

Step-by-step explanation:

because if you round the 1.5  it = 2 and the the pool would be the same on all sides so it would be 2*2*2 to get depth time height times length to get your total of 8. sorry if i get this wrong, just trying to help

8 0
2 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Other questions:
  • 12+18n+7-14n write an equivalent expression using like terms
    12·1 answer
  • (11/2x + 3) -2(-11/4x -5/2)
    5·2 answers
  • Write the equation of the circle whose diameter has endpoints (-16, -16) and (-4, -8). *
    12·1 answer
  • Mrs. Bell's class is selling Hobbs Middle Jaguar t-shirts to raise money for a trip. They typically sell 400 t-shirts a year for
    7·1 answer
  • Derrecks dog sitting $12 plus $5 per hour
    6·1 answer
  • What is the quotient? 1060 ÷ 48 Enter your answer as a mixed number in the simplest form in the box.
    14·2 answers
  • Which inequality shows the relationship between the plotted points on the number line ​
    7·1 answer
  • SOMEONE HELP PLEASE EASY MATHHH PERCENTAGE OF AN AMOUNT
    7·1 answer
  • DB is a perpendicular bisector of ADC.<br> AC = 2x + 20 BC = 4x-2 Solve for x.<br> Find BC and AC.
    10·1 answer
  • One more time help????
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!