9(n+3)=7n-3
1) distribute 9 into (n+3)
9n+27=7n-3
2) subtract 7n on both sides
2n+27=-3
3) subtract 27 on both sides
2n=-30
4) divide by 2
n=-15
Answer:
75.4 inches
Step-by-step explanation:
circumference = 2πr = 24π ≅ 75.4 inches
It's really more of a tubcake than a cupcake.
Answer:
153/20
Step-by-step explanation:
I assume you're asking

So

=

Jackson = 1
+
Lopez = 6
+
Chen = 3
=
10 cousins
Answer:
![A_{f}=4\pi (\sqrt[3]{36} r)^{2}\\\\V_{f}=\frac{4}{3} \pi (36r^{3})](https://tex.z-dn.net/?f=A_%7Bf%7D%3D4%5Cpi%20%28%5Csqrt%5B3%5D%7B36%7D%20r%29%5E%7B2%7D%5C%5C%5C%5CV_%7Bf%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%2836r%5E%7B3%7D%29)
Step-by-step explanation:
In order to find the final radii of the sphere, we need to calculate the volume, knowing that volumes are additive:
![V_{1}=\frac{4}{3} \pi (r^{3})\\\\V_{2}=\frac{4}{3} \pi (2r)^{3}\\\\V_{3}=\frac{4}{3} \pi (3r)^{3}\\\\V_{f}=\frac{4}{3} \pi (r^{3}+(2r)^{3}+(3r)^{3})\\\\V_{f}=\frac{4}{3} \pi (r^{3}+8r^{3}+27r^{3})\\\\V_{f}=\frac{4}{3} \pi (36r^{3})\\\\V_{f}=\frac{4}{3} \pi R^{3}\\\\R=\sqrt[3]{36} r](https://tex.z-dn.net/?f=V_%7B1%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%28r%5E%7B3%7D%29%5C%5C%5C%5CV_%7B2%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%282r%29%5E%7B3%7D%5C%5C%5C%5CV_%7B3%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%283r%29%5E%7B3%7D%5C%5C%5C%5CV_%7Bf%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%28r%5E%7B3%7D%2B%282r%29%5E%7B3%7D%2B%283r%29%5E%7B3%7D%29%5C%5C%5C%5CV_%7Bf%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%28r%5E%7B3%7D%2B8r%5E%7B3%7D%2B27r%5E%7B3%7D%29%5C%5C%5C%5CV_%7Bf%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%2836r%5E%7B3%7D%29%5C%5C%5C%5CV_%7Bf%7D%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20R%5E%7B3%7D%5C%5C%5C%5CR%3D%5Csqrt%5B3%5D%7B36%7D%20r)
Now that we know the radii of the new sphere, we can calculate the surface area:
![A_{f}=4\pi R^{2}\\\\A_{f}=4\pi (\sqrt[3]{36} r)^{2}](https://tex.z-dn.net/?f=A_%7Bf%7D%3D4%5Cpi%20R%5E%7B2%7D%5C%5C%5C%5CA_%7Bf%7D%3D4%5Cpi%20%28%5Csqrt%5B3%5D%7B36%7D%20r%29%5E%7B2%7D)