1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
3 years ago
10

Take away the parentheses using distributive property. −2(3v − 2x -1)

Mathematics
1 answer:
Alecsey [184]3 years ago
8 0
 You have to multiply -2 to all of the numbers inside the parenthesis and you will have your answer. -6v+4x+2
You might be interested in
What type of number is -6/0
hjlf

Answer: is a indeterminate number there is no number multiplied by zero that gives -6

Step-by-step explanation:

6 0
3 years ago
The graph below shows a system of equations: Draw a line labeled y equals minus x plus 5 by joining the ordered pairs 0, 5 and 5
Nina [5.8K]
IM NEW HERE I THINK ITS 677
7 0
3 years ago
50 men working 10 hours daily can complete a job in
Sliva [168]

<h2>Given :-</h2>

  • 50 men do 10 hours work daily complete work in 20 days

  • 80 men do job in 50% time

<h2>To Find :-</h2>

  • Days required

<h2>Solution :-</h2>

  • 1 man may do job in (50 × 20) days =
  • 1 man may do job in 1000 days

Now,

  • 80 man = 1000/80 = 12.5

Now,

  • When hours reduced 50% then we will multiply days by 2
  • Total days = 12.5 × 2 = 25 days.

<h2>Hence</h2>

  • Option C is correct

\begin{gathered} \\ \end{gathered}

8 0
3 years ago
Evaluate the integral, show all steps please!
Aloiza [94]

Answer:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x=\dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x

Rewrite 9 as 3²  and rewrite the 3/2 exponent as square root to the power of 3:

\implies \displaystyle \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

<u />\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=3 \sin \theta

\begin{aligned}\implies \sqrt{3^2-x^2} & =\sqrt{3^2-(3 \sin \theta)^2}\\ & = \sqrt{9-9 \sin^2 \theta}\\ & = \sqrt{9(1-\sin^2 \theta)}\\ & = \sqrt{9 \cos^2 \theta}\\ & = 3 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=3 \cos \theta

\implies \text{d}x=3 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x & = \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x\\\\& = \int \dfrac{1}{\left(3 \cos \theta\right)^3}\:\:3 \cos \theta\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{\left(3 \cos \theta\right)^2}\:\:\text{d}\theta \\\\ & =  \int \dfrac{1}{9 \cos^2 \theta} \:\: \text{d}\theta\end{aligned}

Take out the constant:

\implies \displaystyle \dfrac{1}{9} \int \dfrac{1}{\cos^2 \theta}\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad\sec^2 \theta=\dfrac{1}{\cos^2 \theta}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta = \dfrac{1}{9} \tan \theta+\text{C}

\textsf{Use the trigonometric identity}: \quad \tan \theta=\dfrac{\sin \theta}{\cos \theta}

\implies \dfrac{\sin \theta}{9 \cos \theta} +\text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{3}:

\implies \dfrac{x}{9(3 \cos \theta)} +\text{C}

\textsf{Substitute back in }3 \cos \theta=\sqrt{9-x^2}:

\implies \dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Learn more about integration by substitution here:

brainly.com/question/28156101

brainly.com/question/28155016

4 0
2 years ago
How many milliliters are in a gallon?
Marta_Voda [28]
3785.41 milliliters per  gallon
3 0
4 years ago
Read 2 more answers
Other questions:
  • Due to fire laws, no more than 720 people may attend a performance at metro auditorium. The balcony holds 120 people. There are
    7·1 answer
  • Four less than the product of twice a number and eight
    12·1 answer
  • What is the Largest prime factor of 2²+3²+5² ?
    6·2 answers
  • What is the sum of the measures of the interior angles of a 13 sided polygon
    14·2 answers
  • Heeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelp and do the order of operation
    7·1 answer
  • Andre and Morgan are both headed to Florida for vacation. Andre will drive 70 miles per hour. Morgan will drive 55 miles per hou
    11·1 answer
  • What is the MOST specific name for quadrilateral ABCD
    12·2 answers
  • Please help 20 points and brainly<br> how do u solve 7h= -(2h-18)
    11·1 answer
  • X + 2x - 7/4=1 - x/2 -x ayudaaaaa
    8·2 answers
  • Sketch a graph of
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!