The perimeter is adding all the outside edges together:
4 + 1 +4 +1 + 3 + 1 = 14 cm.
k, n - integers
2k+1 - an odd integer
2n+1 - another odd integer
The product of them:
(2k + 1)(2n + 1) =
= 4kn + 2k + 2n + 1 =
= 2(2kn + k + n) + 1
The product of integers (2kn) is integer
and the sum of them (2kn+k+n) also is integer
So (2k + 1)(2n + 1) = 2(2kn + k + n) + 1 is an odd integer
Answer:
R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Step-by-step explanation:
Squaring both sides of equation:
I^2 = (ER)^2/(R^2 + (WL)^2)
<=>(ER)^2 = (I^2)*(R^2 + (WL)^2)
<=>(ER)^2 - (IR)^2 = (IWL)^2
<=> R^2(E^2 - I^2) = (IWL)^2
<=> R^2 = (IWL)^2/(E^2 - I^2)
<=> R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Hope this helps!
Graph A since it crosses all 4 regions of the graph
Answer:
D.) (14, 0); the time it takes for the bird to reach the ground
Step-by-step explanation:
The attached graph shows a plot of the table values and the two offered solution options.
The dependent variable in this scenario is the bird's height above the ground. When that is zero, the bird is on the ground. This fact makes choices B and C seem ridiculous.
We note from the table and graph that the bird is on a path that decreases in height by 3 feet every 2 seconds. If the bird continues that rate of descent, it will reach the ground after 14 seconds.
That is, its (time, height) pair will be (14, 0), matching choice D.
_____
Choosing any answer to this question requires making assumptions that are inconsistent with real-world bird behavior. At least, the problem statement should say what assumptions are applicable.